Publications by authors named "Stephen Clive Hayes"

Background: Robotic assisted gait training (RAGT) uses a powered exoskeleton to support an individual's body and move their limbs, with the aim of activating latent, pre-existing movement patterns stored in the lower spinal cord called central pattern generators (CPGs) to facilitate stepping. The parameters that directly stimulate the stepping CPGs (hip extension and ipsilateral foot unloading) should be targeted to maximise the rehabilitation benefits of these devices.

Aim: To compare the biomechanical profiles of individuals with a spinal cord injury (SCI) and able-bodied individuals inside the ReWalkTM powered exoskeleton and to contrast the users' profiles with the exoskeleton.

View Article and Find Full Text PDF

Background: Overground lower-limb robotic exoskeletons are assistive devices used to facilitate ambulation and gait rehabilitation. Our understanding of how closely they resemble comfortable and slow walking is limited. This information is important to maximise the effects of gait rehabilitation.

View Article and Find Full Text PDF

Context: Robotic assisted gait training (RAGT) technology can be used as a rehabilitation tool or as an assistive device for spinal cord injured (SCI) individuals. Its impact on upright stepping characteristics of SCI individuals using treadmill or overground robotic exoskeleton systems has yet to be established.

Objective: To systematically review the literature and identify if overground or treadmill based RAGT use in SCI individuals elicited differences in temporal-spatial characteristics and functional outcome measures.

View Article and Find Full Text PDF