Publications by authors named "Stephen Chelko"

Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including , and . Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (ACM) is a nonischemic, familial heart disease with a high risk of sudden cardiac death (SCD) in the pediatric population and accounts for >20% of SCDs worldwide [...

View Article and Find Full Text PDF

Introduction: Cigarette smoke (CS) invokes an inflammatory response associated with vascular dysfunction and atherosclerosis. The role of sex and nicotine in CS effects on cardiovascular function and atherosclerosis is unexplored.

Methods: Male and female C57Bl/6 WT (wild type) and ApoE-/- mice were exposed to CS and nicotine with access to chow and water ad libitum for 16 weeks to fill this gap.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes, which accounts for most cases of stress-related arrhythmic sudden death, in young and athletes. AC hearts display fibro-fatty lesions that generate the arrhythmic substrate and cause contractile dysfunction. A correlation between physical/emotional stresses and arrhythmias supports the involvement of sympathetic neurons (SNs) in the disease, but this has not been confirmed previously.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease characterized by cardiac dysfunction, arrhythmias, and myocardial inflammation. Exercise and stress can influence the disease's progression. Thus, an investigation of whether a high-fat diet (HFD) contributes to ACM pathogenesis is warranted.

View Article and Find Full Text PDF

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (ACM) is a familial, nonischemic heart disease typically inherited via an autosomal dominant pattern (Nava et al., [1]; Wlodarska et al., [2]).

View Article and Find Full Text PDF

Background: Nuclear factor κB (NF-κB) signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy (ACM) by mobilizing CCR2-expressing macrophages that promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with ACM.

Objectives: We sought to determine if persistent innate immune signaling via NF-κB occurs in cardiac myocytes in patients with ACM and if this is associated with myocardial infiltration of proinflammatory cells expressing CCR2.

View Article and Find Full Text PDF

Objectives: We sought to determine if persistent innate immune signaling via NFκB occurs in cardiac myocytes in patients with arrhythmogenic cardiomyopathy and if this is associated with myocardial infiltration of pro-inflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NFκB signaling.

Background: NFκB signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy by mobilizing CCR2-expressing macrophages which promote myocardial injury and arrhythmias.

View Article and Find Full Text PDF

Unlabelled: Inhibition of nuclear factor kappa-B (NFκB) signaling prevents disease in mice, a model of arrhythmogenic cardiomyopathy (ACM). Moreover, NFκB is activated in ACM patient-derived iPSC-cardiac myocytes under basal conditions . Here, we used genetic approaches and sequencing studies to define the relative pathogenic roles of immune signaling in cardiac myocytes vs.

View Article and Find Full Text PDF

Aims: Platelet activation and endothelial dysfunction contribute to adverse outcomes in patients with acute coronary syndromes (ACS). The goals of this study were to assess the impact of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition on markers of platelet activation and endothelial dysfunction in ACS patients and the interaction among PCSK9, platelets, and endothelial cells (ECs) on left internal mammary artery (LIMA) vascular endothelium using specimens obtained during coronary artery bypass surgery (CABG).

Methods And Results: Acute coronary syndromes patients enrolled in the Evolocumab in ACS trials were randomized to placebo or a single dose of 420 mg evolocumab within 24 h of hospitalization.

View Article and Find Full Text PDF

In a poll of 714 US physicians, it was revealed that only 40.7% felt very confident in their ability to provide the same quality of care, overall, to patients with disabilities (PWDs) compared with patients without disabilities. It was also found that only 56.

View Article and Find Full Text PDF

Arrhythmogenic Cardiomyopathy (ACM) is a familial heart disease, characterized by contractile dysfunction, ventricular arrhythmias (VAs), and the risk of sudden cardiac death. Currently, implantable cardioverter defibrillators and antiarrhythmics are the mainstays in ACM therapeutics. Angiotensin receptor blockers (ARBs) have been highlighted in the treatment of heart diseases, including ACM.

View Article and Find Full Text PDF

Arrhythmogenic Cardiomyopathy (ACM), a Mendelian disorder that can affect both left and right ventricles, is most often associated with pathogenic desmosomal variants that can lead to fibrofatty replacement of the myocardium, a pathological hallmark of this disease. Current therapies are aimed to prevent the worsening of disease phenotypes and sudden cardiac death (SCD). Despite the use of implantable cardioverter defibrillators (ICDs) there is no present therapy that would mitigate the loss in electrical signal and propagation by these fibrofatty barriers.

View Article and Find Full Text PDF

Aims: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients.

Methods And Results: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.

View Article and Find Full Text PDF

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies.

View Article and Find Full Text PDF

Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous mutant mice ( ), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis.

View Article and Find Full Text PDF

Patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) classically initially present with ventricular arrhythmias or, less commonly, heart failure. Myocardial inflammation has been implicated in pathogenesis, but clinical myocarditis in ARVC is less described. We therefore studied clinical myocarditis as an initial ARVC presentation, and hypothesized that these patients have distinct clinical and genetic characteristics.

View Article and Find Full Text PDF

Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD.

View Article and Find Full Text PDF

Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction.

View Article and Find Full Text PDF