Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples ( = 1,384) of medication-free individuals with first-episode and recurrent MDD ( = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls ( = 699).
View Article and Find Full Text PDFClinical studies of major depression (MD) generally focus on group effects, yet interindividual differences in brain function are increasingly recognized as important and may even impact effect sizes related to group effects. Here, we examine the magnitude of individual differences in relation to group differences that are commonly investigated (e.g.
View Article and Find Full Text PDFNeural network-level changes underlying symptom remission in major depressive disorder (MDD) are often studied from a single perspective. Multimodal approaches to assess neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A pipeline was developed to integrate a computationally intense data fusion method with a toolbox, to produce a faster and more intuitive pipeline for combining functional connectivity with structural connectivity (denoted as anatomically weighted functional connectivity ()).
View Article and Find Full Text PDFWe examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years).
View Article and Find Full Text PDFBackground: Identifying neuroimaging biomarkers of antidepressant response may help guide treatment decisions and advance precision medicine.
Aims: To examine the relationship between anhedonia and functional neurocircuitry in key reward processing brain regions in people with major depressive disorder receiving aripiprazole adjunct therapy with escitalopram.
Method: Data were collected as part of the CAN-BIND-1 study.
Preclinical research implicates stress-induced upregulation of the enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1), in reduced hippocampal volume. In the current study, we tested the hypothesis that greater SGK1 mRNA expression in humans would be associated with lower hippocampal volume, but only among those with a history of prolonged stress exposure, operationalized as childhood maltreatment (physical, sexual, and/or emotional abuse). Further, we examined whether baseline levels of SGK1 and hippocampal volume, or changes in these markers over the course of antidepressant treatment, would predict treatment outcomes in adults with major depression [MDD].
View Article and Find Full Text PDFBackground: Neuropsychiatric symptoms (NPS) are a core feature of most neurodegenerative and cerebrovascular diseases. White matter hyperintensities and brain atrophy have been implicated in NPS. We aimed to investigate the relative contribution of white matter hyperintensities and cortical thickness to NPS in participants across neurodegenerative and cerebrovascular diseases.
View Article and Find Full Text PDFThe effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability.
View Article and Find Full Text PDFOculomotor tasks generate a potential wealth of behavioural biomarkers for neurodegenerative diseases. Overlap between oculomotor and disease-impaired circuitry reveals the location and severity of disease processes via saccade parameters measured from eye movement tasks such as prosaccade and antisaccade. Existing studies typically examine few saccade parameters in single diseases, using multiple separate neuropsychological test scores to relate oculomotor behaviour to cognition; however, this approach produces inconsistent, ungeneralizable results and fails to consider the cognitive heterogeneity of these diseases.
View Article and Find Full Text PDFBackground: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states.
Methods: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD).
The P-glycoprotein efflux pump, encoded by the ABCB1 gene, has been shown to alter concentrations of various antidepressants in the brain. In this study, we conducted a systematic review and meta-analysis to investigate the association between six ABCB1 single-nucleotide polymorphisms (SNPs; rs1045642, rs2032582, rs1128503, rs2032583, rs2235015, and rs2235040) and antidepressant treatment outcomes in individuals with major depressive disorder (MDD), including new data from the Canadian Biomarker and Integration Network for Depression (CAN-BIND-1) cohort. For the CAN-BIND-1 sample, we applied regression models to investigate the association between ABCB1 SNPs and antidepressant treatment response, remission, tolerability, and antidepressant serum levels.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
January 2023
Neuroimaging-based brain age is a biomarker that is generated by machine learning (ML) predictions. The brain age gap (BAG) is typically defined as the difference between the predicted brain age and chronological age. Studies have consistently reported a positive BAG in individuals with schizophrenia (SCZ).
View Article and Find Full Text PDFIntroduction: Understanding synergies between neurodegenerative and cerebrovascular pathologies that modify dementia presentation represents an important knowledge gap.
Methods: This multi-site, longitudinal, observational cohort study recruited participants across prevalent neurodegenerative diseases and cerebrovascular disease and assessed participants comprehensively across modalities. We describe univariate and multivariate baseline features of the cohort and summarize recruitment, data collection, and curation processes.
Int J Biomed Imaging
October 2022
The hypothalamus is a small grey matter structure which plays a crucial role in many physiological functions. Some studies have found an association between hypothalamic volume and psychopathology, which stresses the need for a standardized method to maximize segmentation accuracy. Here, we provide a detailed step-by-step method outlining the procedures to manually segment the hypothalamus using anatomical T1w images from 3T scanners, which many neuroimaging studies collect as a standard anatomical reference image.
View Article and Find Full Text PDFCytochrome P450 drug-metabolizing enzymes may contribute to interindividual differences in antidepressant outcomes. We investigated the effects of CYP2C19 and CYP2D6 gene variants on response, tolerability, and serum concentrations. Patients (N = 178) were treated with escitalopram (ESC) from weeks 0-8 (Phase I), and at week 8, either continued ESC if they were responders or were augmented with aripiprazole (ARI) if they were non-responders (<50% reduction in Montgomery-Åsberg Depression Rating Scale from baseline) for weeks 8-16 (Phase II).
View Article and Find Full Text PDFBackground: Prediction of treatment outcomes is a key step in improving the treatment of major depressive disorder (MDD). The Canadian Biomarker Integration Network in Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through analyses of clinical assessment, neuroimaging, and blood biomarkers.
Methods: In the CAN-BIND-1 dataset of 192 adults with MDD and outcomes of treatment with escitalopram, we applied machine learning models in a nested cross-validation framework.
Many previous intervention studies have used functional magnetic resonance imaging (fMRI) data to predict the antidepressant response of patients with major depressive disorder (MDD); however, practical constraints have limited many of those attempts to small, single centre studies which may not adequately reflect how these models will generalize when used in clinical practice. Not only does the act of collecting data at multiple sites generally increase sample sizes (a critical point in machine learning development) it also generates a more heterogeneous dataset due to systematic differences in scanners at different sites, and geographical differences in patient populations. As part of the Canadian Biomarker Integration Network in Depression (CAN-BIND-1) study, 144 MDD patients from six sites underwent resting state fMRI prior to starting escitalopram treatment, and again two weeks after the start.
View Article and Find Full Text PDFIntroduction: Amyloid measurement provides important confirmation of pathology for Alzheimer's disease (AD) clinical trials. However, many amyloid positive (Am+) early-stage subjects do not worsen clinically during a clinical trial, and a neurodegenerative measure predictive of decline could provide critical information. Studies have shown correspondence between perfusion measured by early amyloid frames post-tracer injection and fluorodeoxyglucose (FDG) positron emission tomography (PET), but with limitations in sensitivity.
View Article and Find Full Text PDFPurpose: Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study.
Methods: Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans.
Objectives: Caregiving burdens are a substantial concern in the clinical care of persons with neurodegenerative disorders. In the Ontario Neurodegenerative Disease Research Initiative, we used the Zarit's Burden Interview (ZBI) to examine: (1) the types of burdens captured by the ZBI in a cross-disorder sample of neurodegenerative conditions (2) whether there are categorical or disorder-specific effects on caregiving burdens, and (3) which demographic, clinical, and cognitive measures are related to burden(s) in neurodegenerative disorders?
Methods/design: N = 504 participants and their study partners (e.g.
Background: Multiple treatments are effective for major depressive disorder (MDD), but the outcomes of each treatment vary broadly among individuals. Accurate prediction of outcomes is needed to help select a treatment that is likely to work for a given person. We aim to examine the performance of machine learning methods in delivering replicable predictions of treatment outcomes.
View Article and Find Full Text PDFChange in empathy is an increasingly recognised symptom of neurodegenerative diseases and contributes to caregiver burden and patient distress. Empathy impairment has been associated with brain atrophy but its relationship to white matter hyperintensities (WMH) is unknown. We aimed to investigate the relationships amongst WMH, brain atrophy, and empathy deficits in neurodegenerative and cerebrovascular diseases.
View Article and Find Full Text PDFThe Ontario Brain Institute's "Brain-CODE" is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs.
View Article and Find Full Text PDF