Protein structure prediction via artificial intelligence/machine learning (AI/ML) approaches has sparked substantial research interest in structural biology and adjacent disciplines. More recently, AlphaFold2 (AF2) has been adapted for the prediction of multiple structural conformations in addition to single-state structures. This novel avenue of research has focused on proteins (typically 50 residues in length or greater), while multi-conformation prediction of shorter peptides has not yet been explored in this context.
View Article and Find Full Text PDFThe Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.
View Article and Find Full Text PDFCurr Opin Struct Biol
November 2024
Structural biologists and the open-access Protein Data Bank (PDB) played decisive roles in combating the COVID-19 pandemic. Global biostructure data were turned into global knowledge, allowing scientists and engineers to understand the inner workings of coronaviruses and develop effective countermeasures. Two mRNA vaccines, initially designed with guidance from PDB structures of the SARS-CoV-1 and MERS-CoV spike proteins, prevented infections entirely or reduced the likelihood of morbidity and mortality for more than five billion individual recipients worldwide.
View Article and Find Full Text PDFBindingDB (bindingdb.org) is a public, web-accessible database of experimentally measured binding affinities between small molecules and proteins, which supports diverse applications including medicinal chemistry, biochemical pathway annotation, training of artificial intelligence models and computational chemistry methods development. This update reports significant growth and enhancements since our last review in 2016.
View Article and Find Full Text PDFNatural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling.
View Article and Find Full Text PDFMotivation: Volumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biology, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven valuable in analyzing protein structures (e.g.
View Article and Find Full Text PDFWith the ever-expanding toolkit of molecular viewers, the ability to visualize macromolecular structures has never been more accessible. Yet, the idiosyncratic technical intricacies across tools and the integration complexities associated with handling structure annotation data present significant barriers to seamless interoperability and steep learning curves for many users. The necessity for reproducible data visualizations is at the forefront of the current challenges.
View Article and Find Full Text PDFThe EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.
View Article and Find Full Text PDFOpen access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
View Article and Find Full Text PDFMotivation: Tools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome.
Results: We introduce a novel pairwise structure alignment tool (rcsb.
The Protein Data Bank (PDB) is the global repository for public-domain experimentally determined 3D biomolecular structural information. The archival nature of the PDB presents certain challenges pertaining to updating or adding associated annotations from trusted external biodata resources. While each Worldwide PDB (wwPDB) partner has made best efforts to provide up-to-date external annotations, accessing and integrating information from disparate wwPDB data centers can be an involved process.
View Article and Find Full Text PDFmTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling.
View Article and Find Full Text PDFThe Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g.
View Article and Find Full Text PDFIHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.
View Article and Find Full Text PDFBiomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints.
View Article and Find Full Text PDFMolecular origami offers an offline way to explore the 3D structures of biology. Visit PDB101.rcsb.
View Article and Find Full Text PDFThe EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.
View Article and Find Full Text PDFBiomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints.
View Article and Find Full Text PDFNatural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling.
View Article and Find Full Text PDFRecent advances in Artificial Intelligence and Machine Learning (., AlphaFold, RosettaFold, and ESMFold) enable prediction of three-dimensional (3D) protein structures from amino acid sequences alone at accuracies comparable to lower-resolution experimental methods. These tools have been employed to predict structures across entire proteomes and the results of large-scale metagenomic sequence studies, yielding an exponential increase in available biomolecular 3D structural information.
View Article and Find Full Text PDFAs we celebrate the 30 anniversary of Structure, we have asked structural biologists about their expectations on how their respective fields are likely to develop in the next ten years in this collection of Voices.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
September 2023
The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.
View Article and Find Full Text PDFGiven the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.
View Article and Find Full Text PDF