Spectrochim Acta A Mol Biomol Spectrosc
September 2009
Bovine and human serum albumins and recombinant human albumin, all non-covalently complexed with 5- and 16-doxyl stearic acids, were investigated by ESR spectroscopy in solution over a range of pH values (5.5-8.0) and temperatures (25-50 degrees C), with respect to the allocation and mobility of fatty acid (FA) molecules bound to the proteins and conformation of the binding sites.
View Article and Find Full Text PDFMost blood plasma zinc is bound to albumin, but the structure of the binding site has not been determined. Zn K-edge extended x-ray absorption fine structure spectroscopy and modeling studies show that the major Zn(2+) site on albumin is a 5-coordinate site with average Zn-O/N distances of 1.98 A and a weak sixth O/N bond of 2.
View Article and Find Full Text PDFCys34 in domain I of the three-domain serum protein albumin is the binding site for a wide variety of biologically and clinically important small molecules, provides antioxidant activity, and constitutes the largest portion of free thiol in blood. Analysis of X-ray structures of albumin reveals that the loop containing Tyr84 occurs in multiple conformations. In structures where the loop is well defined, there appears to be an H-bond between the OH of Tyr84 and the sulfur of Cys34.
View Article and Find Full Text PDFAlbumin is the major transport protein in blood for Zn(2+), a metal ion required for physiological processes and recruited by various drugs and toxins. However, the Zn(2+)-binding site(s) on albumin is ill-defined. We have analyzed the 18 x-ray crystal structures of human albumin in the PDB and identified a potential five-coordinate Zn site at the interface of domains I and II consisting of N ligands from His-67 and His-247 and O ligands from Asn-99, Asp-249, and H(2)O, which are the same amino acid ligands as those in the zinc enzymes calcineurin, endonucleotidase, and purple acid phosphatase.
View Article and Find Full Text PDF