Publications by authors named "Stephen B Sampson"

Monoclonal antibodies (mAbs) have emerged as a mainstream therapeutic option against cancer. mAbs mediate tumor cell-killing through several mechanisms including complement-dependent cytotoxicity (CDC). However, studies of mAb-mediated CDC against tumor cells remain largely dependent on in vitro systems.

View Article and Find Full Text PDF

To cope with proteotoxic stress, cells attenuate protein synthesis. However, the precise mechanisms underlying this fundamental adaptation remain poorly defined. Here we report that mTORC1 acts as an immediate cellular sensor of proteotoxic stress.

View Article and Find Full Text PDF

Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1.

View Article and Find Full Text PDF

Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Here, we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate.

View Article and Find Full Text PDF

A better understanding of the mechanisms governing receptor trafficking between the plasma membrane (PM) and intracellular compartments requires an experimental approach with excellent spatial and temporal resolutions. Moreover, such an approach must also have the ability to distinguish receptors localized on the PM from those in intracellular compartments. Most importantly, detecting receptors in a single vesicle requires outstanding detection sensitivity, since each vesicle carries only a small number of receptors.

View Article and Find Full Text PDF

Glioma is the one of the most lethal forms of human cancer. The most effective glioma therapy to date-surgery followed by radiation treatment-offers patients only modest benefits, as most patients do not survive more than five years following diagnosis due to glioma relapse (1,2). The discovery of cancer stem cells in human brain tumors holds promise for having an enormous impact on the development of novel therapeutic strategies for glioma (3).

View Article and Find Full Text PDF

Dopamine D₂ receptor (DRD2) is important for normal function of the brain reward circuit. Lower DRD2 function in the brain increases the risk for substance abuse, obesity, attention deficit/hyperactivity disorder, and depression. Moreover, DRD2 is the target of most antipsychotics currently in use.

View Article and Find Full Text PDF