Publications by authors named "Stephen A Stohlman"

Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. Sensitization of wild-type (WT) mice induces hapten-reactive effector CD8 T cells producing IFN-γ and IL-17- and IL-4-producing CD4 T cells that cannot mediate CHS. Although CXCR2-dependent Ly6G (neutrophil) cell recruitment into hapten-challenged skin is required to direct effector CD8 T cell infiltration into the challenge site to elicit CHS, 2,4-dinitrofluorobenezene (DNFB) sensitization of CXCR2 mice and neutrophil-depleted WT mice induced both hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17.

View Article and Find Full Text PDF

Dysregulated Foxp3 Treg functions result in uncontrolled immune activation and autoimmunity. Therefore, identifying cellular factors modulating Treg functions is an area of great importance. Here, using Treg-specific mice, we report that IL-27 signaling in Foxp3 Tregs is essential for Tregs to control autoimmune inflammation in the central nervous system (CNS).

View Article and Find Full Text PDF

Background: CNS inflammation resulting from infection, injury, or neurodegeneration leads to accumulation of diverse B cell subsets. Although antibody secreting cells (ASC) within the inflamed CNS have been extensively examined, memory B cell (Bmem) characterization has been limited as they do not secrete antibody without stimulation. Moreover, unlike human Bmem, reliable surface markers for murine Bmem remain elusive.

View Article and Find Full Text PDF

Viral infections have long been implicated as triggers of autoimmune diseases, including multiple sclerosis (MS), a central nervous system (CNS) inflammatory demyelinating disorder. Epitope spreading, molecular mimicry, cryptic antigen, and bystander activation have been implicated as mechanisms responsible for activating self-reactive (SR) immune cells, ultimately leading to organ-specific autoimmune disease. Taking advantage of coronavirus JHM strain of mouse hepatitis virus (JHMV)-induced demyelination, this study demonstrates that the host also mounts counteractive measures to specifically limit expansion of endogenous SR T cells.

View Article and Find Full Text PDF

Central nervous system (CNS) inflammation associated with viral infection and autoimmune disease results in the accumulation of B cells in various differentiation stages. However, the contribution between peripheral and CNS activation remains unclear. During gliatropic coronavirus induced encephalomyelitis, accumulation of protective antibody secreting cells is preceded by infiltration of B cells with a naïve and early differentiation phenotype (Phares et al.

View Article and Find Full Text PDF

Background: Tumor necrosis factor (TNF) has pleiotropic functions during both the demyelinating autoimmune disease multiple sclerosis (MS) and its murine model experimental autoimmune encephalomyelitis (EAE). How TNF regulates disability during progressive disease remains unresolved. Using a progressive EAE model characterized by sustained TNF and increasing morbidity, this study evaluates the role of unregulated TNF in exacerbating central nervous system (CNS) pathology and inflammation.

View Article and Find Full Text PDF

Elevated CXCL13 within the central nervous system (CNS) correlates with humoral responses in several neuroinflammatory diseases, yet its role is controversial. During coronavirus encephalomyelitis CXCL13 deficiency impaired CNS accumulation of memory B cells and antibody-secreting cells (ASC) but not naïve/early-activated B cells. However, despite diminished germinal center B cells and follicular helper T cells in draining lymph nodes, ASC in bone marrow and antiviral serum antibody were intact in the absence of CXCL13.

View Article and Find Full Text PDF

Background: Microbial infections have been implicated in initiating and enhancing severity of autoimmune diseases including the demyelinating disease multiple sclerosis (MS). Nevertheless, the incidence of both acute and persisting viral infections without evidence of autoimmune sequelae suggests that this process is well controlled. The conditions promoting or stemming self-reactive (SR) T cells following viral-induced tissue damage thus need to be better defined.

View Article and Find Full Text PDF

Unlabelled: Myd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5).

View Article and Find Full Text PDF
Article Synopsis
  • * In mice lacking the anti-inflammatory cytokine IL-10, while viral infection is controlled quickly, there’s a sustained expansion of demyelinating lesions and altered immune cell behavior.
  • * IL-10 plays a crucial role in regulating astrocyte response and limiting further damage in demyelination areas, highlighting its importance in white matter injury management.
View Article and Find Full Text PDF

Background: Therapeutic modalities effective in patients with progressive forms of multiple sclerosis (MS) are limited. In a murine model of progressive MS, the sustained disability during the chronic phase of experimental autoimmune encephalomyelitis (EAE) correlated with elevated expression of interleukin (IL)-6, a cytokine with pleiotropic functions and therapeutic target for non-central nervous system (CNS) autoimmune disease. Sustained IL-6 expression in astrocytes restricted to areas of demyelination suggested that IL-6 plays a major role in disease progression during chronic EAE.

View Article and Find Full Text PDF

CD4 T-cell help is not a universal requirement for effective primary CD8 T cells but is essential to generate memory CD8 T cells capable of recall responses. This study examined how CD4 T cells affect primary and secondary anti-viral CD8 T-cell responses within the central nervous system (CNS) during encephalomyelitis induced by sublethal gliatropic coronavirus. CD4 T-cell depletion before infection did not impair peripheral expansion, interferon-γ production, CNS recruitment or initial CNS effector capacity of virus-specific CD8 T cells ex vivo.

View Article and Find Full Text PDF

IL-27 is a pleiotropic member of the IL-6 and IL-12 cytokine family composed of the IL-27p28 and the EBV-induced gene 3. IL-27 and its receptor mRNA are both upregulated in the CNS during acute encephalomyelitis induced by the JHM strain of mouse hepatitis virus (JHMV) and sustained during viral persistence. Contributions of IL-27 to viral pathogenesis were evaluated by infection of IL-27Rα-chain-deficient (IL-27Rα(-/-)) mice.

View Article and Find Full Text PDF

Unlabelled: Various infections in the central nervous system (CNS) trigger B cell accumulation; however, the relative dynamics between viral replication and alterations in distinct B cell subsets are largely unknown. Using a glia-tropic coronavirus infection, which is initiated in the brain but rapidly spreads to and predominantly persists in the spinal cord, this study characterizes longitudinal changes in B cell subsets at both infected anatomical sites. The phase of T cell-dependent, antibody-independent control of infectious virus was associated with a similar recruitment of naive/early-activated IgD(+) IgM(+) B cells into both the brain and spinal cord.

View Article and Find Full Text PDF

Double-stranded RNA-dependent protein kinase (PKR) regulates antiviral activity, immune responses, apoptosis and neurotoxicity. Gliatropic coronavirus infection induced PKR activation in infected as well uninfected cells within the central nervous system (CNS). However, PKR deficiency only modestly increased viral replication and did not affect IFN-α/β or IL-1β expression.

View Article and Find Full Text PDF

The influence of CD25(+)CD4(+) regulatory T cells (Treg) on acute and chronic viral infection of the central nervous system (CNS) was examined using a glial tropic murine coronavirus. Treg in the CNS were highest during initial T cell mediated virus control, decreased and then remained relatively stable during persistence. Anti-CD25 treatment did not affect CNS recruitment of inflammatory cells.

View Article and Find Full Text PDF

Type I interferons (IFN-α/β) limit viral dissemination prior to the emergence of adaptive immune responses through the concerted action of interferon-stimulated genes (ISGs). Although IFN-α/β induction by coronaviruses is modest, it effectively limits viral spread within the central nervous system (CNS) and protects against mortality. The protective roles of specific ISGs against the mouse hepatitis virus (MHV) members of the coronaviruses are largely unknown.

View Article and Find Full Text PDF

Infection of the CNS (central nervous system) with a sublethal neurotropic coronavirus (JHMV) induces a vigorous inflammatory response. CD4⁺ and CD8⁺ T cells are essential to control infectious virus but at the cost of tissue damage. An enigma in understanding the contribution of T cell subsets in pathogenesis resides in their distinct migration pattern across the BBB (blood brain barrier).

View Article and Find Full Text PDF

Acute coronavirus encephalomyelitis is controlled by T cells while humoral responses suppress virus persistence. This study defines the contribution of interleukin (IL)-21, a regulator of T and B cell function, to central nervous system (CNS) immunity. IL-21 receptor deficiency did not affect peripheral T cell activation or trafficking, but dampened granzyme B, gamma interferon and IL-10 expression by CNS T cells and reduced serum and intrathecal humoral responses.

View Article and Find Full Text PDF

The nervous system is the target for acute encephalitic viral infections, as well as a reservoir for persisting viruses. Intrathecal antibody (Ab) synthesis is well documented in humans afflicted by infections associated with neurological complications, as well as the demyelinating disease, multiple sclerosis. This review focuses on the origin, recruitment, maintenance, and biological relevance of Ab-secreting cells (ASC) found in the central nervous system (CNS) following experimental neurotropic RNA virus infections.

View Article and Find Full Text PDF

Microbial infections of the central nervous system (CNS) are often associated with local accumulation of antibody (Ab)-secreting cells (ASC). By providing a source of Ab at the site of infection, CNS-localized ASC play a critical role in acute viral control and in preventing viral recrudescence. Following coronavirus-induced encephalomyelitis, the CNS accumulation of ASC is chemokine (C-X-C motif) receptor 3 (CXCR3) dependent.

View Article and Find Full Text PDF

Background: Anti-viral CD8 T-cell activity is enhanced and prolonged by CD4 T-cell-mediated help, but negatively regulated by inhibitory B7-H1 interactions. During viral encephalomyelitis, the absence of CD4 T cells decreases CD8 T cell activity and impedes viral control in the central nervous system (CNS). By contrast, the absence of B7-H1 enhances CD8 T-cell function and accelerates viral control, but increases morbidity.

View Article and Find Full Text PDF

Intraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented.

View Article and Find Full Text PDF

Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS). Cells resident within the central nervous system (CNS) are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination.

View Article and Find Full Text PDF

Type I interferons (IFNα/β) provide a primary defense against infection. Nevertheless, the dynamics of IFNα/β induction and responsiveness by central nervous system (CNS) resident cells in vivo in response to viral infections are poorly understood. Mice were infected with a neurotropic coronavirus with tropism for oligodendroglia and microglia to probe innate antiviral responses during acute encephalomyelitis.

View Article and Find Full Text PDF