Publications by authors named "Stephen A Douglas"

1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure.

View Article and Find Full Text PDF

NADPH oxidase isoform-2 (NOX2) generates reactive oxygen species (ROS) that contribute to neurodegenerative and cardiovascular pathologies. However, validation of NOX2 as a pharmacotherapeutic target has been hampered by a lack of mechanistically-defined inhibitors. Using cellular and biochemical assays, we explored previously reported inhibitors of ROS production (perhexiline, suramin, VAS2870 and two Shionogi patent compounds) as direct NOX2 inhibitors.

View Article and Find Full Text PDF

Urotensin II (UII) is a potential mediator in the pathogenesis of cardiovascular disease, and inhibition of its actions at the urotensin receptor (UT) has been shown to improve cardiac function and structural changes of the myocardium in a model of myocardial infarction. In this study we utilized a model of pressure-overload hypertrophy induced by abdominal aortic constriction (AAC) which resulted in hypertrophy, increased fibrosis and impaired diastolic and systolic function. These changes were associated with a 4-fold increase in UII protein expression in the myocardium.

View Article and Find Full Text PDF

Background: Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II.

Methods And Results: We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47).

View Article and Find Full Text PDF

Rationale: Expression of the vasoactive peptide Urotensin II (UII) is elevated in a number of cardiovascular diseases.

Objective: Here, we sought to determine the effect of UII receptor (UT) gene deletion in a mouse model of atherosclerosis.

Methods And Results: UT knockout (KO) mice were crossed with ApoE KO mice to generate UT/ApoE double knockout (DKO) mice.

View Article and Find Full Text PDF

Background: Urotensin II (UII) and its receptor (UT) are implicated in mood disorders, such as stress and anxiety, and this may result, at least in part, from increased norepinephrine release from the cerebral cortex. Benzodiazepines have been widely used as hypnotics and anxiolytics, producing a decrease in cerebrocortical norepinephrine release. We hypothesized that there was some interaction between benzodiazepines and the UII system in the cerebral cortex.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO) metabolizes heme to form the vasodilator carbon monoxide and antioxidant biliverdin. Upregulation of HO-1 by hemin, which is also a substrate attenuates thrombosis in rodent models, however, whether protection is due to HO-1 upregulation or to increased substrate availability is unknown. This study tested the hypothesis that treatment of mice with cobalt protoporphyrin (CoPP), a non-substrate HO-1 inducer, would protect the endothelium from laser injury.

View Article and Find Full Text PDF

Urotensin II (UII) and its receptor UT are upregulated in the pathological setting of various cardiovascular diseases including atherosclerosis. However, their exact role in atherosclerosis remains to be determined. In the present study we used four strains of mice; wild-type (WT), UT(+) (a transgenic strain expressing human UT driven by the alpha-smooth muscle-specific, SM22, promoter), ApoE knockout (ko), and UT(+)/ApoE ko.

View Article and Find Full Text PDF

Epoxy- and dihydroxy-eicosatrienoic acids (EETs and DHETs) are vasoactive cytochrome P450 metabolites of arachidonic acid. Interestingly, however, the mechanism(s) by which EETs/DHETs mediate smooth muscle relaxation remains unclear. In contrast to previous reports, where dilation was purportedly large-conductance Ca(2+)-activated K(+) (BK(Ca)) and/or transient receptor potential cation channel, subfamily V, member 4 (TRPV4) channel-mediated, 14,15-EET-induced vasodilation [reversal of contractile tone established with the thromboxane receptor (TP) agonist 15-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic acid (U-46619)] was unaltered in BK(Ca) and TRPV4 knockout mouse isolated aortae compared with wild-type controls, indicating a significant BK(Ca)/TRPV4-resistant mechanism.

View Article and Find Full Text PDF

High throughput screening of our compound collection led to the discovery of a novel series of N-alkyl-5H-pyrido[4,3-b]indol-1-amines as urotensin-II receptor antagonists. Synthesis, initial structure and activity relationships, functional and animal ortholog activities of the series are described.

View Article and Find Full Text PDF

Aminomethylpiperazines, reported previously as being kappa-opioid receptor agonists, were identified as lead compounds in the development of selective urotensin receptor antagonists. Optimized substitution of the piperazine moiety has provided high affinity urotensin receptor antagonists with greater than 100-fold selectivity over the kappa-opioid receptor. Select compounds were found to inhibit urotensin-induced vasoconstriction in isolated rat aortic rings consistent with the hypothesis that an urotensin antagonist may be useful for the treatment of hypertension.

View Article and Find Full Text PDF

SAR exploration of the central diamine, benzyl, and terminal aminoalkoxy regions of the N-cyclic azaalkyl benzamide series led to the identification of very potent human urotensin-II receptor antagonists such as 1a with a K(i) of 4 nM. The synthesis and structure-activity relationships (SAR) of N-cyclic azaalkyl benzamides are described.

View Article and Find Full Text PDF

Urotensin II (UII) has been reported to modulate rapid eye movement (REM) sleep via activation of brainstem cholinergic neurons and REM sleep is regulated by locus coerleus (LC)-cerebrocortical noradrenergic neurons. We hypothesized that UII may activate LC-cerebrocortical noradrenergic neurons. To test this hypothesis, we have examined the effects of UII on norepinephrine release from rat cerebrocortical slices.

View Article and Find Full Text PDF

Lead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.

View Article and Find Full Text PDF

This work describes the development of potent and selective human Urotensin-II receptor antagonists starting from lead compound 1, (3,4-dichlorophenyl)methyl{2-oxo-2-[3-phenyl-2-(1-pyrrolidinylmethyl)-1-piperidinyl]ethyl}amine. Several problems relating to oral bioavailability, cytochrome P450 inhibition, and off-target activity at the kappa opioid receptor and cardiac sodium channel were addressed during lead development. hUT binding affinity relative to compound 1 was improved by more than 40-fold in some analogs, and a structural modification was identified which significantly attenuated both off-target activities.

View Article and Find Full Text PDF

A series of 2-aminomethyl piperidines has been discovered as novel urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent, cross-species active, and functional urotensin-II receptor antagonists such as 1a and 11a are described.

View Article and Find Full Text PDF

Angiotensin II (Ang II) activates p38 mitogen-activated protein kinase (p38 MAPK) and increases reactive oxygen species (ROS), but the nature of the relationship in vivo is not fully understood. We assess the effect of SB239063AN, a highly selective, orally active, p38 MAPK inhibitor, on Ang II-dependent hypertension, target-organ damage and ROS production. Sprague-Dawley rats and MAPKAP kinase-2 knockout mice were infused with Ang II.

View Article and Find Full Text PDF

Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C.

View Article and Find Full Text PDF

Treatment for symptomatic atherosclerosis is being carried out by balloon mediated angioplasty, with or without stent implantation, more and more frequently. Although advances with the development of drug eluting stents have improved prognosis, restenosis is still the most limiting factor for this treatment modality. Urotensin-II (UII), a small pleiotropic vasoactive peptide is increasingly being recognized as a contributory factor in cardiovascular diseases.

View Article and Find Full Text PDF

It is now well established that urotensin-II (UII) levels are increased in several cardiovascular diseases. We previously demonstrated that UII and the UII receptor (UT) protein levels are significantly increased in the hearts of both humans and rats with congestive heart failure (CHF). We have also recently demonstrated that UII blockade, with a selective UII antagonist, improves heart function in a rat model of ischemic CHF.

View Article and Find Full Text PDF

Lysophosphatidylcholine (LPC) is the major bioactive lipid component of oxidized LDL, thought to be responsible for many of the inflammatory effects of oxidized LDL described in both inflammatory and endothelial cells. Inflammation-induced transformation of vascular smooth muscle cells from a contractile phenotype to a proliferative/secretory phenotype is a hallmark of the vascular remodeling that is characteristic of atherogenesis; however, the role of LPC in this process has not been fully described. The present study tested the hypothesis that LPC is an inflammatory stimulus in coronary artery smooth muscle cells (CASMCs).

View Article and Find Full Text PDF

Expression of urotensin II (UII) is significantly elevated in the hearts of patients with congestive heart failure (CHF). Recent reports have also shown increased plasma levels of UII in patients with CHF, and these levels correlated with the severity of disease. We therefore hypothesized that blockade of UII signaling would improve cardiac function in a rat model of CHF.

View Article and Find Full Text PDF

Several peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied.

View Article and Find Full Text PDF

Urotensin-II (U-II), a ligand for the G-protein-coupled receptor UT, has been characterized as the most potent mammalian vasoconstrictor identified to date. Although circulating levels of U-II are altered in lower species (e.g.

View Article and Find Full Text PDF

The novel urotensin-II (U-II) receptor (UT) ligand, [Pen(5),DTrp(7),Dab(8)]U-II(4-11) (UFP-803), was pharmacologically evaluated and compared with urantide in in vitro and in vivo assays. In the rat isolated aorta, UFP-803 was inactive alone but, concentration dependently, displaced the contractile response to U-II to the right, revealing a competitive type of antagonism and a pA(2) value of 7.46.

View Article and Find Full Text PDF