Azetidines are of particular interest in medicinal chemistry for their favorable properties, including increased resistance to oxidative metabolism and lower lipophilicity. The recent development of [2 + 2] reactions has significantly expanded the limited repertoire of methods for azetidine synthesis, but access to more complex architectures still requires further development. Herein, we report a visible-light-enabled intramolecular [2 + 2] cycloaddition of unactivated alkenes that proved previously unreactive to access tricyclic azetidines with 3D complex structures and high levels of saturation.
View Article and Find Full Text PDFA method for the synthesis of highly substituted cyclopropanes via a quasi-Favorskii rearrangement is described. The method includes the combination two chemical transformations starting from α,α-dichlorocyclobutanones prepared via the [2 + 2] Staudinger ketene cycloaddition between either terminal- or -olefins and dichloroketene. First, α,α-dichlorocyclobutanones are reacted with organocerium reagents to afford the corresponding tertiary alcohols in good to excellent yields through a nucleophilic addition reaction that provided exclusively -products.
View Article and Find Full Text PDF