Publications by authors named "Stephen A Back"

Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated.

View Article and Find Full Text PDF

Objective: Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment.

View Article and Find Full Text PDF

Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known.

View Article and Find Full Text PDF

Objective: Because the role of white matter (WM) degenerating microglia (DM) in remyelination failure is unclear, we sought to define the core features of this novel population of aging human microglia.

Methods: We analyzed postmortem human brain tissue to define a population of DM in aging WM lesions. We used immunofluorescence staining and gene expression analysis to investigate molecular mechanisms related to the degeneration of DM.

View Article and Find Full Text PDF

A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging.

View Article and Find Full Text PDF

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI).

View Article and Find Full Text PDF

Perinatal hypoxic-ischemic (HI) brain damage has long been a major cause of acute mortality and chronic neurological morbidity in infants and children. Experimental animal models are essential to gain insights into the pathogenesis and management of perinatal HI brain damage. Prior to 1980, only large animal models were available.

View Article and Find Full Text PDF

Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury.

View Article and Find Full Text PDF

Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear.

View Article and Find Full Text PDF

Children who survive premature birth often exhibit reductions in hippocampal volumes and deficits in working memory. However, it is unclear whether synaptic plasticity and cellular mechanisms of learning and memory can be elicited or disrupted in the preterm fetal hippocampus. CA1 hippocampal neurons were exposed to two common insults to preterm brain: transient hypoxia-ischemia (HI) and hypoxia (Hx).

View Article and Find Full Text PDF

Congenital heart disease (CHD) is among the most common birth defects. Children with CHD frequently display long-term intellectual and behavioral disability. Emerging evidence indicates that cardiac anomalies lead to a reduction in cerebral oxygenation, which appears to profoundly impact on the maturation of cerebral regions responsible for higher-order cognitive functions.

View Article and Find Full Text PDF

Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44.

View Article and Find Full Text PDF

Objective: Microvascular brain injury (mVBI) is a common pathological correlate of vascular contributions to cognitive impairment and dementia (VCID) that leads to white matter (WM) injury (WMI). VCID appears to arise from chronic recurrent white matter ischemia that triggers oxidative stress and an increase in total oligodendrocyte lineage cells. We hypothesized that mVBI involves vasodilator dysfunction of white matter penetrating arterioles and aberrant oligodendrocyte progenitor cell (OPC) responses to WMI.

View Article and Find Full Text PDF
Article Synopsis
  • Preterm infants are at risk for neurobehavioral disabilities due to issues in brain growth, particularly involving subplate neurons (SPNs) which are crucial for developing cortical circuits.
  • In a study using a preterm fetal sheep model, researchers found that SPNs are resistant to cell death from hypoxia-ischemia but showed altered maturation and reduced dendritic complexity due to these conditions.
  • The findings suggest that limiting hypoxemia during brain development could help improve the growth and maturation of the cerebral cortex, potentially reducing cognitive impairments later in life.
View Article and Find Full Text PDF

The human preterm brain is particularly susceptible to cerebral white matter injury (WMI) that disrupts the normal progression of developmental myelination. Advances in the care of preterm infants have resulted in a sustained reduction in the severity of WMI that has shifted from more severe focal necrotic lesions to milder diffuse WMI. Nevertheless, WMI remains a global health problem and the most common cause of chronic neurological morbidity from cerebral palsy and diverse neurobehavioral disabilities.

View Article and Find Full Text PDF

Cerebral white matter injury (WMI) contributes to cognitive dysfunction associated with pathological aging. Because reactive astrocyte-related factors contribute to remyelination failure after WMI, we sought accurate, cost-effective, and reproducible histopathological approaches for quantification of morphometric features of reactive astrogliosis in aged human white matter in patients with vascular brain injury (VBI). We compared 7 distinct approaches to quantify the features of glial fibrillary acidic protein (GFAP)-labeled astrocytes in the prefrontal white matter of brains from patients with VBI (n = 17, mean age 88.

View Article and Find Full Text PDF

In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired.

View Article and Find Full Text PDF

The glycosaminoglycan hyaluronan (HA), a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS). HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes.

View Article and Find Full Text PDF

Preterm neonates are surviving with a milder spectrum of motor and cognitive disabilities that appear to be related to widespread disturbances in cell maturation that target cerebral gray and white matter. Whereas the preterm brain was previously at high risk for destructive lesions, preterm survivors now commonly display less severe injury that is associated with aberrant regeneration and repair responses that result in reduced cerebral growth. Impaired cerebral white matter growth is related to myelination disturbances that are initiated by acute death of premyelinating oligodendrocytes, but are followed by rapid regeneration of premyelinating oligodendrocytes that fail to normally mature to myelinating cells.

View Article and Find Full Text PDF

Leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or Phase I/II clinical trials.

View Article and Find Full Text PDF

Objective: Although the spectrum of white matter injury (WMI) in preterm infants is shifting from cystic necrotic lesions to milder forms, the factors that contribute to this changing spectrum are unclear. We hypothesized that recurrent hypoxia-ischemia (rHI) will exacerbate the spectrum of WMI defined by markers of inflammation and molecules related to the extracellular matrix (hyaluronan (HA) and the PH20 hyaluronidase) that regulate maturation of the oligodendrocyte (OL) lineage after WMI.

Methods: We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI.

View Article and Find Full Text PDF

Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvevmttvk5em2bopu889o1l0fd6u5tm0m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once