Publications by authors named "Stephany P Wei"

Ammonia-oxidizing microorganisms (AOM) contribute to one of the largest nitrogen fluxes in the global nitrogen budget. Four distinct lineages of AOM: ammonia-oxidizing archaea (AOA), beta- and gamma-proteobacterial ammonia-oxidizing bacteria (β-AOB and γ-AOB) and complete ammonia oxidizers (comammox), are thought to compete for ammonia as their primary nitrogen substrate. In addition, many AOM species can utilize urea as an alternative energy and nitrogen source through hydrolysis to ammonia.

View Article and Find Full Text PDF

Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is a biofilm technology that offers more treatment capacity in comparison to activated sludge. The integration of AGS into existing continuous-flow activated sludge systems is of great interest as process intensification can be achieved without the use of plastic-based biofilm carriers. Such integration should allow good separation of granules/flocs and ideally with minor retrofitting, making it an ongoing challenge.

View Article and Find Full Text PDF

To date, high performance of full-scale aerobic granular sludge (AGS) technology has been demonstrated on a global scale. Its further integration with existing continuous flow activated sludge (CFAS) treatment plants is the next logical step. All granular sludge reactors operated in sequencing batch reactors (SBR) mode with anaerobic feeding conditions select for growth of phosphorus and glycogen accumulating organisms (PAO and GAO, respectively), which are known to enhance sludge settling characteristics.

View Article and Find Full Text PDF

Sustainable and closed-loop nutrient cycling require the recovery of valuable resources from wastewater. Resource recovery from diluted wastewater streams is limited by diluted concentrations and unfavorable reaction kinetics. In comparison, source separated urine allows resource recovery from a highly concentrated nutrient stream, resulting in a more sustainable and efficient recovery practice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: