We treat the guiding-center dynamics in a varying external Maxwell field using a relativistically covariant action principle which reproduces the known Vandervoort expression for the drift velocity and extends it to curved spacetime. We derive the corresponding kinetic theory and ideal hydrodynamic theory. In contrast to conventional five-equation hydrodynamics, the guiding-center hydrodynamics needs only three equations due to a constraint on the motion across magnetic field.
View Article and Find Full Text PDFWe propose a general approach to freezing out fluctuations in heavy-ion collisions using the principle of maximum entropy. We find the results naturally expressed as a direct relationship between the irreducible relative correlators quantifying the deviations of hydrodynamic as well as hadron gas fluctuations from the ideal hadron gas baseline. The method also allows us to determine heretofore unknown parameters crucial for the freeze-out of fluctuations near the QCD critical point in terms of the QCD equation of state.
View Article and Find Full Text PDFWe derive a set of nontrivial relations between second-order transport coefficients which follow from the second law of thermodynamics upon considering a regime close to uniform rotation of the fluid. We demonstrate that an extension of hydrodynamics by spin variable is equivalent to modifying conventional hydrodynamics by a set of second-order terms satisfying the relations we derived. We point out that a novel contribution to the heat current orthogonal to vorticity and temperature gradient reminiscent of the thermal Hall effect is constrained by the second law.
View Article and Find Full Text PDFIn the context of the search for the QCD critical point using non-Gaussian fluctuations, we obtain the evolution equations for non-Gaussian cumulants to the leading order of the systematic expansion in the magnitude of thermal fluctuations. We develop a diagrammatic technique in which the leading order contributions are given by tree diagrams. We introduce a Wigner transform for multipoint correlators and derive the evolution equations for three- and four-point Wigner functions for the problem of nonlinear stochastic diffusion with multiplicative noise.
View Article and Find Full Text PDFWe show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients.
View Article and Find Full Text PDFUsing a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem.
View Article and Find Full Text PDFWe show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps.
View Article and Find Full Text PDFWe derive the nonequilibrium kinetic equation describing the motion of chiral massless particles in the regime where it can be considered classically. We show that the Berry monopole which appears at the origin of the momentum space due to level crossing is responsible for the chiral magnetic and vortical effects.
View Article and Find Full Text PDFWe point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is universally negative when the critical point is approached on the crossover side of the phase separation line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g.
View Article and Find Full Text PDFWe study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity (deltaN)3 approximately xi4.
View Article and Find Full Text PDFWe propose a five-dimensional framework for modeling low-energy properties of QCD. In the simplest three parameter model we compute masses, decay rates and couplings of the lightest mesons. The model fits experimental data to within 10%.
View Article and Find Full Text PDFWe argue that the event-by-event fluctuation of the proton number is a meaningful and promising observable for the purpose of detecting the QCD critical end point in heavy-ion collision experiments. The long range fluctuation of the order parameter induces a characteristic correlation between protons which can be measured. The proton fluctuation also manifests itself as anomalous enhancement of charge fluctuations near the end point, which might be already seen in existing data.
View Article and Find Full Text PDFWe point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation.
View Article and Find Full Text PDFWe discuss QCD with two light flavors at large baryon chemical potential micro. Color superconductivity leads to partial breaking of the color SU(3) group. We show that the infrared physics is governed by the gluodynamics of the remaining SU(2) group with an exponentially soft confinement scale Lambda(')(QCD) approximately Deltaexp[-a(mu)/(gDelta)], where Delta<< mu is the superconducting gap, g is the strong coupling, and a = 2sqrt[2] pi/11.
View Article and Find Full Text PDFA kinetic master equation for multiplicity distributions is formulated for charged particles which are created or destroyed only in pairs due to the conservation of their Abelian charge. It allows one to study time evolution of the multiplicity distributions in a relativistic many-body system with arbitrary average particle multiplicities. It is shown to reproduce the equilibrium results for both canonical (rare particles) and grand canonical (abundant particles) systems.
View Article and Find Full Text PDFWe show that in very dense quark matter there must exist metastable domain walls where the axial U(1) phase of the color-superconducting condensate changes by 2pi. The decay rate of the domain walls is exponentially suppressed and we compute it semiclassically. We give an estimate of the critical chemical potential above which our analysis is under theoretical control.
View Article and Find Full Text PDFQCD at finite isospin chemical potential mu(I) has no fermion sign problem and can be studied on the lattice. We solve this theory analytically in two limits: at low mu(I), where chiral perturbation theory is applicable, and at asymptotically high mu(I), where perturbative QCD works. At low isospin density the ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing.
View Article and Find Full Text PDFPhys Rev D Part Fields
September 1995