During a systemic inflammatory response endothelial-expressed surface molecules have been strongly implicated in orchestrating immune responses. Previous studies have shown enhanced extracellular nucleotide release during acute inflammatory conditions. Therefore, we hypothesized that endothelial nucleotide receptors could play a role in vascular inflammation.
View Article and Find Full Text PDFSepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia, or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (AR) as potential therapeutic target in endotoxin-induced acute lung injury.
View Article and Find Full Text PDFBackground: Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions.
Methodology, Principal Findings: We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia.
Ischemia of the myocardium is generally accepted to be characterized by swelling of myocytes resulting in cardiac dysfunction. However, data are limited concerning the molecular mechanisms of fast water fluxes across cell membranes in ischemic hearts. Since aquaporin-4 (AQP4) is a water channel with an enormous water flux capacity, we investigated in this study whether this water channel protein might play a role in myocyte swelling following myocardial infarction.
View Article and Find Full Text PDF