Annu Int Conf IEEE Eng Med Biol Soc
July 2018
Accurate pre-clinical study reporting requires validated processing tools to increase data reproducibility within and between laboratories. Segmentation of rodent brain from non-brain tissue is an important first step in preclinical imaging pipelines for which well validated tools are still under development. The current study aims to clarify the best approach to automatic brain extraction for studies in the immature rat.
View Article and Find Full Text PDFTreatment of severe traumatic brain injury (TBI) in the intensive care unit focuses on controlling intracranial pressure, ensuring sufficient cerebral perfusion, and monitoring for secondary injuries. However, there are limited prognostic tools and no biomarkers or tests of the evolving neuropathology. Metabolomics has the potential to be a powerful tool to indirectly monitor evolving dysfunctional metabolism.
View Article and Find Full Text PDFCarbohydrate fuel augmentation following traumatic brain injury may be a viable treatment to improve recovery when cerebral oxidative metabolism of glucose is depressed. We performed a primed constant sodium L-lactate infusion in 11 moderate to severely brain injured adults. Blood was collected before and periodically during the infusion study.
View Article and Find Full Text PDFBackground: The objective was to investigate the impact of targeting tight glycemic control (4.4-6.1 mM) on endogenous ketogenesis in severely head-injured adults.
View Article and Find Full Text PDFMetabolomics is an important member of the omics community in that it defines which small molecules may be responsible for disease states. This article reviews the essential principles of metabolomics from specimen preparation, chemical analysis, to advanced statistical methods. Metabolomics in traumatic brain injury has so far been underutilized.
View Article and Find Full Text PDFAccurate temperature measurement is a requisite for obtaining reliable thermodynamic and kinetic information in all NMR experiments. A widely used method to calibrate sample temperature depends on a secondary standard with temperature-dependent chemical shifts to report the true sample temperature, such as the hydroxyl proton in neat methanol or neat ethylene glycol. The temperature-dependent chemical shift of the hydroxyl protons arises from the sensitivity of the hydrogen-bond network to small changes in temperature.
View Article and Find Full Text PDFProton nuclear magnetic resonance (H-NMR) spectroscopic analysis of cerebral spinal fluid provides a quick, non-invasive modality for evaluating the metabolic activity of brain-injured patients. In a prospective study, we compared the CSF of 44 TBI patients and 13 non-injured control subjects. CSF was screened for ten parameters: β-glucose (Glu), lactate (Lac), propylene glycol (PG), glutamine (Gln), alanine (Ala), α-glucose (A-Glu), pyruvate (PYR), creatine (Cr), creatinine (Crt), and acetate (Ace).
View Article and Find Full Text PDFWe introduce a new category of nanoparticle-based T(1) MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd(3+)·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD).
View Article and Find Full Text PDFA new method for enhancing MRI contrast between gray matter (GM) and white matter (WM) in epilepsy surgery patients with symptomatic lesions is presented. This method uses the radiation damping feedback interaction in high-field MRI to amplify contrast due to small differences in resonance frequency in GM and WM corresponding to variations in tissue susceptibility. High-resolution radiation damping-enhanced (RD) images of in vitro brain tissue from five patients were acquired at 14 T and compared with corresponding conventional T(1)-, T(2) (*)-, and proton density (PD)-weighted images.
View Article and Find Full Text PDF