Prion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI].
View Article and Find Full Text PDFcontains several prion elements, which are epigenetically transmitted as self-perpetuating protein conformations. One such prion is [ ], whose protein determinant is Swi1, a subunit of the SWI/SNF chromatin-remodeling complex. We previously reported that [ ] formation results in a partial loss-of-function phenotype of poor growth in nonglucose medium and abolishment of multicellular features.
View Article and Find Full Text PDFThe budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700).
View Article and Find Full Text PDFIn Parkinson's disease (PD), misfolded and aggregated α-synuclein protein accumulates in degenerating midbrain dopaminergic neurons. The amino acid alanine-76 in α-synuclein and phosphorylation at serine-87 and serine-129 are thought to regulate its aggregation and toxicity. However, their exact contributions to α-synuclein membrane association are less clear.
View Article and Find Full Text PDFProteases that degrade the amyloid-β peptide (Aβ) are important in protecting against Alzheimer's disease (AD), and understanding these proteases is critical to understanding AD pathology. Endopeptidases sensitive to inhibition by thiorphan and phosphoramidon are especially important, because these inhibitors induce dramatic Aβ accumulation (∼30- to 50-fold) and pathological deposition in rodents. The Aβ-degrading enzyme neprilysin (NEP) is the best known target of these inhibitors.
View Article and Find Full Text PDFIn Parkinson's disease (PD), midbrain dopaminergic neuronal death is linked to the accumulation of aggregated α-synuclein. The familial PD mutant form of α-synuclein, E46K, has not been thoroughly evaluated yet in an organismal model system. Here, we report that E46K resembled wild-type (WT) α-synuclein in Saccharomyces cerevisiae in that it predominantly localized to the plasma membrane, and it did not induce significant toxicity or accumulation.
View Article and Find Full Text PDF