The successful use of peptides as potential radiopharmaceuticals essentially requires the modification of the bioactive peptide hormones to introduce chelators for radiolabeling. In this study, four Y 1/Y 2 receptor-selective NPY analogues with different receptor subtype specificities have been investigated. For in vitro studies, the cold metal surrogate was used.
View Article and Find Full Text PDFUnlabelled: The aim of this study was to target the angiogenesis-associated extracellular matrix protein ED-B fibronectin for molecular imaging of solid tumors. Recombinant and chemically modified derivatives of the single-chain antibody fragment (scFv) L19, capable of being labeled with 99mTc, were synthesized and radiolabeled. The resulting compounds 99mTc-AP39, 99mTc-L19-His, and 99mTc-L19-Hi20 were assessed for their imaging properties in vivo.
View Article and Find Full Text PDFPurpose: The expression of extra domain B (ED-B) fibronectin is always associated with angiogenic processes and can be exclusively observed in tissues undergoing growth and/or extensive remodeling. Due to this selective expression, ED-B fibronectin is an interesting target for radioimmunotherapy of malignant diseases. The aim of this study was to identify the most appropriate ED-B-targeting radioimmunoconjugate for the therapy of solid tumors.
View Article and Find Full Text PDFIn order to achieve tumor-specific targeting of adeno-associated virus (AAV)-mediated gene expression, the promoter of the glucose transporter isoform 1 (GLUT1) gene was cloned upstream of the enhanced green fluorescence protein (EGFP) and the herpes simplex virus thymidine kinase (HSVtk) gene. FACS analysis performed at 48 h after transient infection with rAAV/cytomegalovirus (CMV)egfp viral particles revealed an increase of fluorescence in all the cell lines tested. However, EGFP expression under control of the GLUT1 promoter element (rAAV/GTI-1.
View Article and Find Full Text PDFTargeted transfer of a functionally active sodium iodide symporter (NIS) into tumour cells may be used for radioiodine therapy of cancer. Therefore, we investigated radioiodine uptake in a hepatoma cell line in vitro and in vivo after transfer of the sodium iodide symporter ( hNIS) gene under the control of a tumour-specific regulatory element, the promoter of the glucose transporter 1 gene (GTI-1.3).
View Article and Find Full Text PDF