Publications by authors named "Stephanie S Watowich"

Background: We generated a CD103DC vaccine using K7M3 OS cell lysates (cDCV) and investigated its ability to induce regression of primary tumors, established lung metastases, and a systemic immune response.

Methods: A bilateral tumor model was used to assess cDCV therapy efficacy and systemic immunity induction. K7M3 cells were injected into mice bilaterally.

View Article and Find Full Text PDF

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation.

View Article and Find Full Text PDF

Metastatic disease remains the leading cause of death due to cancer, yet the mechanism(s) of metastasis and its timely detection remain to be elucidated. Neutrophil elastase (NE), a serine protease secreted by neutrophils, is a crucial mediator of chronic inflammation and tumor progression. In this study, we used the PyMT model (NE+/+ and NE-/-) of breast cancer to interrogate the tumor-intrinsic and -extrinsic mechanisms by which NE can promote metastasis.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy.

View Article and Find Full Text PDF

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma.

View Article and Find Full Text PDF

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge.

View Article and Find Full Text PDF

STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated deletion in 20% of the hematopoietic compartment. -deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to -sufficient (CreER) controls.

View Article and Find Full Text PDF

Immunotherapy has greatly improved cancer outcomes, yet variability in response and off-target tissue damage can occur with these treatments, including immune checkpoint inhibitors (ICIs). Multiple lines of evidence indicate the host microbiome influences ICI response and risk of immune-related adverse events (irAEs). As the microbiome is modifiable, these advances indicate the potential to manipulate microbiome components to increase ICI success.

View Article and Find Full Text PDF

Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity.

View Article and Find Full Text PDF

Type I conventional dendritic cells (cDC1s) are an essential Ag-presenting population required for generating adaptive immunity against intracellular pathogens and tumors. While the transcriptional control of cDC1 development is well understood, the mechanisms by which extracellular stimuli regulate cDC1 function remain unclear. We previously demonstrated that the cytokine-responsive transcriptional regulator STAT3 inhibits polyinosinic:polycytidylic acid [poly(I:C)]-induced cDC1 maturation and cDC1-mediated antitumor immunity in murine breast cancer, indicating an intrinsic, suppressive role for STAT3 in cDC1s.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are trying to understand how a medicine called Doxorubicin (Dox) harms the heart, especially how certain immune cells called neutrophils might be involved.
  • Using different scientific methods, they found that neutrophils increased in the heart after Dox treatment, which was linked to the heart working less well and getting damaged.
  • When they removed neutrophils or blocked a specific enzyme they release, the heart was protected from Dox's harmful effects, suggesting that targeting these neutrophils might help people treated with Dox.
View Article and Find Full Text PDF

Novel therapeutic strategies targeting glioblastoma (GBM) often fail in the clinic, partly because preclinical models in which hypotheses are being tested do not recapitulate human disease. To address this challenge, we took advantage of our previously developed spontaneous Qk/Trp53/Pten (QPP) triple-knockout model of human GBM, comparing the immune microenvironment of QPP mice with that of patient-derived tumors to determine whether this model provides opportunity for gaining insights into tumor physiopathology and preclinical evaluation of therapeutic agents. Immune profiling analyses and single-cell sequencing of implanted and spontaneous tumors from QPP mice and from patients with glioma revealed intratumoral immune components that were predominantly myeloid cells (e.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-I) producing cells that promote anti-viral immune responses and contribute to autoimmunity. Development of pDCs requires the transcriptional regulator E2-2 and is opposed by inhibitor of DNA binding 2 (Id2). Prior work indicates Id2 is induced in pDCs upon maturation and may affect pDC IFN-I production via suppression of E2-2, suggesting an important yet uncharacterized role in this lineage.

View Article and Find Full Text PDF

K-ras-mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1β, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1β in the lungs of mice with K-rasG12D-mutant tumors (CC-LR mice).

View Article and Find Full Text PDF

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use.

View Article and Find Full Text PDF

Maintenance of immune homeostasis involves a synergistic relationship between the host and the microbiome. Canonical interferon (IFN) signaling controls responses to acute microbial infection, through engagement of the STAT1 transcription factor. However, the contribution of tonic levels of IFN to immune homeostasis in the absence of acute infection remains largely unexplored.

View Article and Find Full Text PDF

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts.

View Article and Find Full Text PDF

Background: Type 1 conventional dendritic cells (cDC1s) possess efficient antigen presentation and cross-presentation activity, as well as potent T cell priming ability. Tissue-resident cDC1s (CD103 cDC1s in mice, CD141 cDC1s in humans) are linked with improved tumor control, yet the efficacy of immunotherapy using this population is understudied.

Methods: We generated murine CD103 cDC1s in vitro and examined their expression of cDC1-related factors, antigen cross-presentation activity, and accumulation in tumor-draining lymph nodes (TdLNs).

View Article and Find Full Text PDF

Clinical response rates after adoptive cell therapy (ACT) are highly correlated with persistence of the infused T cells. However, antigen-specific T cells found in tumor sites are often well-differentiated effector cells with limited persistence. Central memory CD8 T cells, capable of self-renewal, represent desirable ACT products.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) are a critical immune population, composed of multiple subsets, and responsible for controlling adaptive immunity and tolerance. Although migratory type 1 cDCs (CD103 cDC1s in mice) are necessary to mount CD8 T cell-mediated anti-tumor immunity, whether and how tumors modulate CD103 cDC1 function remain understudied. Signal Transducer and Activator of Transcription 3 (STAT3) mediates the intracellular signaling of tumor-associated immunosuppressive cytokines, such as interleukin (IL)-10; thus, we hypothesized that STAT3 restrained anti-tumor immune responses elicited by CD103 cDC1s.

View Article and Find Full Text PDF

NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1.

View Article and Find Full Text PDF

CXCR5 mediates homing of both B and follicular helper T (T) cells into follicles of secondary lymphoid organs. We found that CXCR5CD8 T cells are present in human tonsils and follicular lymphoma, inhibit T-mediated B cell differentiation, and exhibit strong cytotoxic activity. Consistent with these findings, adoptive transfer of CXCR5CD8 T cells into an animal model of lymphoma resulted in significantly greater antitumor activity than CXCR5CD8 T cells.

View Article and Find Full Text PDF