Publications by authors named "Stephanie S Dusaban"

Background: Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1).

View Article and Find Full Text PDF

Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain.

View Article and Find Full Text PDF

Phospholipase C-ε (PLCε) integrates signaling from G-protein coupled receptors (GPCRs) to downstream kinases to regulate a broad range of biological and pathophysiological responses. Relative to other PLCs, PLCε is unique in that it not only serves a catalytic function in phosphoinositide hydrolysis but also functions as an exchange factor small the low molecular weight G-protein Rap1. PLCε is selectively stimulated by agonists for GPCRs that couple to RhoA, which bind directly to the enzyme to regulate its activity.

View Article and Find Full Text PDF

Neuroinflammation plays a major role in the pathophysiology of diseases of the central nervous system, and the role of astroglial cells in this process is increasingly recognized. Thrombin and the lysophospholipids lysophosphatidic acid and sphingosine 1-phosphate (S1P) are generated during injury and can activate G protein-coupled receptors (GPCRs) on astrocytes. We postulated that GPCRs that couple to Ras homolog gene family, member A (RhoA) induce inflammatory gene expression in astrocytes through the small GTPase responsive phospholipase Cε (PLCε).

View Article and Find Full Text PDF

The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival.

View Article and Find Full Text PDF

The requirement of c-Myb during erythropoiesis spurred an interest in identifying c-Myb target genes that are important for erythroid development. Here, we determined that the neuropeptide neuromedin U (NmU) is a c-Myb target gene. Silencing NmU, c-myb, or NmU's cognate receptor NMUR1 expression in human CD34(+) cells impaired burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) formation compared with control.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) exerts pleiotropic effects during oncogenesis, including the stimulation of cell migration and invasiveness. Although a number of traditional signaling proteins (e.g.

View Article and Find Full Text PDF