The Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium (BC) is a public-private partnership that aims to facilitate drug development with biomarkers across a range of therapeutic areas. The BC is organized to address specific precompetitive biomarker projects, giving participating stakeholders a role in the design and conduct of projects and making the results freely public. Ultimately, the goals of the BC are to accelerate the development of new medicines, inform regulatory decision making, and improve patient care.
View Article and Find Full Text PDFSkin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.
View Article and Find Full Text PDFGreen fluorescent protein (GFP) and other fluorescent proteins are essential tools for biological research. When fused to peptides or proteins as a reporter, GFP enables localization and quantitation of gene products in otherwise unmanipulated live cells or organisms. We previously reported that a sizable fraction of nascent GFP is post-translationally converted into a 20-kDa Triton X-100-insoluble proteasome substrate (Qian, S.
View Article and Find Full Text PDFCD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin.
View Article and Find Full Text PDFDespite extensive ex vivo investigation, the spatiotemporal organization of immune cells interacting with virus-infected cells in tissues remains uncertain. To address this, we used intravital multiphoton microscopy to visualize immune cell interactions with virus-infected cells following epicutaneous vaccinia virus (VV) infection of mice. VV infects keratinocytes in epidermal foci and numerous migratory dermal inflammatory monocytes that outlie the foci.
View Article and Find Full Text PDFFunctional CD8 T cell effector and memory responses are generated and maintained during murine γ-herpesvirus 68 (γHV68) persistent infection despite continuous presentation of viral lytic Ags. However, the identity of the CD8 T cell subpopulations that mediate effective recall responses and that can participate in the generation of protective memory to a γ-herpesvirus infection remains unknown. During γHV68 persistence, ∼75% of γHV68-specific CD8 T cells coexpress the NK receptors killer cell lectin-like receptor G1 (KLRG1) and NKG2A.
View Article and Find Full Text PDFIt is still unknown whether a noninfectious gammaherpesvirus vaccine is able to prevent or reduce virus persistence. This led us to use dendritic cells loaded with tumor B cells as a vaccine approach for the murine gammaherpesvirus 68 (gammaHV68) model of infection. Dendritic cells loaded with UV-irradiated latently infected tumor B cells induce broad, strong, and long-lasting immunity against gammaHV68.
View Article and Find Full Text PDFThe direct effector mechanisms of CD4 T cells during gamma-herpesvirus 68 (gammaHV68)-persistent infection are less well understood than those of their CD8 T cell counterparts, although there is substantial evidence that CD4 T cells are critical for the control of persistent gamma-herpesvirus infection. Our results show that in gammaHV68-persistently infected mice, CD4 T cells are not cytokine polyfunctional, but there is a division of labor in the CD4 T cell compartment in which CD4 T cells polarize toward two distinct populations with different effector functions: IFN-gamma producers and CD107(+) cytolytic effectors. These two CD4 T cell effector populations degranulate and produce IFN-gamma during steady state without need for exogenous antigenic restimulation, which is fundamentally different from that observed with gammaHV68-specific CD8 T cells.
View Article and Find Full Text PDFAg persistence during high-titer chronic viral infections induces CD8 T cell dysfunction and lack of Ag-independent CD8 T cell memory formation. However, we have a poor understanding of the generation and maintenance of CD8 T cell memory during asymptomatic persistent viral infections, particularly gamma-herpesvirus infections. In this study, we demonstrate that the continuous presence of cognate Ag in the host is not required for the maintenance of CD8 T cell memory during a persistent gamma-herpesvirus infection.
View Article and Find Full Text PDFDuring infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta).
View Article and Find Full Text PDF