Publications by authors named "Stephanie Reeve"

(), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against over the parent SPC.

View Article and Find Full Text PDF

Background/aims: Individuals with neurofibromatosis, including neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2)-related schwannomatosis (SWN), and other forms of SWN, often experience disease manifestations and mental health difficulties for which psychosocial interventions may help. An anonymous online survey of adults with neurofibromatosis assessed their physical, social, and emotional well-being and preferences about psychosocial interventions to inform clinical trial design.

Methods: Neurofibromatosis clinical researchers and patient representatives from the Response Evaluation in Neurofibromatosis and Schwannomatosis International Collaboration developed the survey.

View Article and Find Full Text PDF

Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-wide understanding of how bacteria process antibiotic stress, and how modulation of the involved processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic analysis of how the human pathogen Streptococcus pneumoniae responds to 20 antibiotics.

View Article and Find Full Text PDF

Infections due to Gram-negative bacteria are increasingly dangerous due to the spread of multi-drug resistant strains, emphasizing the urgent need for new antibiotics with alternative modes of action. We have previously identified a novel class of antibacterial agents, thioacetamide-triazoles, using an antifolate targeted screen and determined their mode of action which is dependent on activation by cysteine synthase A. Herein, we report a detailed examination of the anti- structure-activity relationship of the thioacetamide-triazoles.

View Article and Find Full Text PDF

Antimicrobial resistance presents a significant health care crisis. The mutation F98Y in Staphylococcus aureus dihydrofolate reductase (SaDHFR) confers resistance to the clinically important antifolate trimethoprim (TMP). Propargyl-linked antifolates (PLAs), next generation DHFR inhibitors, are much more resilient than TMP against this F98Y variant, yet this F98Y substitution still reduces efficacy of these agents.

View Article and Find Full Text PDF

We discovered azaindole-based compounds with weak innate activity that exhibit substantial potentiation of antibacterial activities of different antibiotics, viz., rifampicin, erythromycin, solithromycin, and novobiocin in Gram-negative bacteria. In the presence of the azaindole derivatives, these antibiotics exhibited submicromolar minimum inhibitory concentrations (MICs) against , , , and .

View Article and Find Full Text PDF

The coronavirus pandemic increased anxiety and stress and prevented access to health care worldwide; it is unclear how COVID-19 affected adults with a multisystem genetic disorder such as neurofibromatosis (NF). An anonymous online survey was distributed through an international registry and foundations to adults with NF (June-August 2020) to assess the impact of the pandemic on mental health and NF health care. Six hundred and thirteen adults (18-81 years; M = 45.

View Article and Find Full Text PDF

Objective: To review and recommend patient-reported outcome (PRO) measures assessing multidimensional domains of quality of life (QoL) to use as clinical endpoints in medical and psychosocial trials for children and adults with neurofibromatosis (NF) type 1, NF2, and schwannomatosis.

Methods: The PRO working group of the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration used systematic methods to review, rate, and recommend existing self-report and parent-report PRO measures of generic and disease-specific QoL for NF clinical trials. Recommendations were based on 4 main criteria: patient characteristics, item content, psychometric properties, and feasibility.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy.

View Article and Find Full Text PDF

Spectinomycin, an aminocyclitol antibiotic, is subject to inactivation by aminoglycoside modifying enzymes (AMEs) through adenylylation or phosphorylation of the 6-hydroxy group position. In this study, the effects of deoxygenation of the 2- and 6-hydroxy group positions on the spectinomycin actinamine ring are probed to evaluate their relationship to ribosomal binding and the antimicrobial activities of spectinomycin, semisynthetic aminomethyl spectinomycins (amSPCs), and spectinamides. To generate these analogs, an improved synthesis of 6-deoxyspectinomycin was developed using the Barton deoxygenation reaction.

View Article and Find Full Text PDF

Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While β-lactam antibiotics are commonly used against and , there are limited data on OM permeability especially in Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five β-lactams in carbapenem-resistant and Both clinical isolates harbored a and several other β-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular β-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses.

View Article and Find Full Text PDF

Increasing rates of drug-resistant Gram-negative (GN) infections, combined with a lack of new GN-effective antibiotic classes, are driving the need for the discovery of new agents. Bacterial metabolism represents an underutilized mechanism of action in current antimicrobial therapies. Therefore, we sought to identify novel antimetabolites that disrupt key metabolic pathways and explore the specific impacts of these agents on bacterial metabolism.

View Article and Find Full Text PDF

The spread of plasmid borne resistance enzymes in clinical isolates is rendering trimethoprim and iclaprim, both inhibitors of dihydrofolate reductase (DHFR), ineffective. Continued exploitation of these targets will require compounds that can broadly inhibit these resistance-conferring isoforms. Using a structure-based approach, we have developed a novel class of ionized nonclassical antifolates (INCAs) that capture the molecular interactions that have been exclusive to classical antifolates.

View Article and Find Full Text PDF

Antibiotic resistance is a rapidly evolving health concern that requires a sustained effort to understand mechanisms of resistance and to develop new agents that overcome those mechanisms. The dihydrofolate reductase (DHFR) inhibitor, trimethoprim (TMP), remains one of the most important orally administered antibiotics. However, resistance through chromosomal mutations and mobile, plasmid-encoded insensitive DHFRs threatens the continued use of this agent.

View Article and Find Full Text PDF

Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target.

View Article and Find Full Text PDF

Mycobacterium tuberculosis continues to cause widespread, life-threatening disease. In the last decade, this threat has grown dramatically as multi- and extensively-drug resistant (MDR and XDR) bacteria have spread globally and the number of agents that effectively treat these infections is significantly reduced. We have been developing the propargyl-linked antifolates (PLAs) as potent inhibitors of the essential enzyme dihydrofolate reductase (DHFR) from bacteria and recently found that charged PLAs with partial zwitterionic character showed improved mycobacterial cell permeability.

View Article and Find Full Text PDF

Although classical, negatively charged antifolates such as methotrexate possess high affinity for the dihydrofolate reductase (DHFR) enzyme, they are unable to penetrate the bacterial cell wall, rendering them poor antibacterial agents. Herein, we report a new class of charged propargyl-linked antifolates that capture some of the key contacts common to the classical antifolates while maintaining the ability to passively diffuse across the bacterial cell wall. Eight synthesized compounds exhibit extraordinary potency against Gram-positive S.

View Article and Find Full Text PDF

Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels.

View Article and Find Full Text PDF

Understanding the structural basis of antibacterial resistance may enable rational design principles that avoid and subvert that resistance, thus leading to the discovery of more effective antibiotics. In this review, we explore the use of crystal structures to guide new discovery of antibiotics that are effective against resistant organisms. Structures of efflux pumps bound to substrates and inhibitors have aided the design of compounds with lower affinity for the pump or inhibitors that more effectively block the pump.

View Article and Find Full Text PDF

While antifolates such as Bactrim (trimethoprim-sulfamethoxazole; TMP-SMX) continue to play an important role in treating community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), resistance-conferring mutations, specifically F98Y of dihydrofolate reductase (DHFR), have arisen and compromise continued use. In an attempt to extend the lifetime of this important class, we have developed a class of propargyl-linked antifolates (PLAs) that exhibit potent inhibition of the enzyme and bacterial strains. Probing the role of the configuration at the single propargylic stereocenter in these inhibitors required us to develop a new approach to nonracemic 3-aryl-1-butyne building blocks by the pairwise use of asymmetric conjugate addition and aldehyde dehydration protocols.

View Article and Find Full Text PDF

Methods to accurately predict potential drug target mutations in response to early-stage leads could drive the design of more resilient first generation drug candidates. In this study, a structure-based protein design algorithm (K* in the OSPREY suite) was used to prospectively identify single-nucleotide polymorphisms that confer resistance to an experimental inhibitor effective against dihydrofolate reductase (DHFR) from Staphylococcus aureus. Four of the top-ranked mutations in DHFR were found to be catalytically competent and resistant to the inhibitor.

View Article and Find Full Text PDF