The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown.
View Article and Find Full Text PDFR-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean.
View Article and Find Full Text PDFGenes (Basel)
December 2021
RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean () is an important staple crop worldwide.
View Article and Find Full Text PDFIn the context of climate change, elevated temperature is a major concern due to the impact on plant-pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant-virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes.
View Article and Find Full Text PDFIdentifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean.
View Article and Find Full Text PDFThe presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight.
View Article and Find Full Text PDFViruses are obligate parasites that replicate intracellularly in many living organisms, including plants. Consequently, no chemicals are available that target only the virus without impacting host cells or vector organisms. The use of natural resistant varieties appears as the most reliable control strategy and remains the best and cheapest option in managing virus diseases, especially in the current ecological context of preserving biodiversity and environment in which the use of phytosanitary products becomes limited.
View Article and Find Full Text PDFPlant viral vectors have been developed to facilitate gene function studies especially in plant species not amenable to traditional mutational or transgenic modifications. In the Fabaceae plant family, the most widely used viral vector is derived from Bean pod mottle virus (BPMV). Originally developed for overexpression of foreign proteins and VIGS studies in soybean, we adapted the BPMV-derived vector for use in other legume species such as Phaseolus vulgaris and Pisum sativum.
View Article and Find Full Text PDFPea (Pisum sativum L.) is an important legume worldwide. The importance of pea in arable rotations and nutritional value for both human and animal consumption have fostered sustained production and different studies to improve agronomic traits of interest.
View Article and Find Full Text PDFCommon bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean.
View Article and Find Full Text PDFBackground: Over the last two years, considerable advances have been made in common bean (Phaseolus vulgaris L.) genomics, especially with the completion of the genome sequence and the availability of RNAseq data. However, as common bean is recalcitrant to stable genetic transformation, much work remains to be done for the development of functional genomics tools adapted to large-scale studies.
View Article and Find Full Text PDFThe Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence. Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C.
View Article and Find Full Text PDFSubtelomeric regions in eukaryotic organisms are known for harboring species-specific tandemly repeated satellite sequences. However, studies on the molecular organization and evolution of subtelomeric repeats are scarce, especially in plants. Khipu is a satellite DNA of 528-bp repeat unit, specific of the Phaseolus genus, with a subtelomeric distribution in common bean, P.
View Article and Find Full Text PDFDrought is a major constraint for the production of common bean (Phaseolus vulgaris L.). To identify molecular responses to water deficit, we performed a differential display RT-PCR (DDRT) analysis using roots of bean plants grown aeroponically and submitted to dehydration.
View Article and Find Full Text PDFCentral to the process of plus-strand RNA virus genome amplification is the viral RNA-dependent RNA polymerase (RdRp). Understanding its regulation is of great importance given its essential function in viral replication and the common architecture and catalytic mechanism of polymerases. Here we show that Turnip yellow mosaic virus (TYMV) RdRp is phosphorylated, when expressed both individually and in the context of viral infection.
View Article and Find Full Text PDF