Publications by authors named "Stephanie Nay"

Environmental and endogenous genotoxic agents can result in a variety of alkylated and carboxymethylated DNA lesions, including N3-ethylthymidine (N3-EtdT), O(2)-EtdT, and O(4)-EtdT as well as N3-carboxymethylthymidine (N3-CMdT) and O(4)-CMdT. By using nonreplicative double-stranded vectors harboring a site-specifically incorporated DNA lesion, we assessed the potential roles of alkyladenine DNA glycosylase (Aag); alkylation repair protein B homologue 2 (Alkbh2); or Alkbh3 in modulating the effects of N3-EtdT, O(2)-EtdT, O(4)-EtdT, N3-CMdT, or O(4)-CMdT on DNA transcription in mammalian cells. We found that the depletion of Aag did not significantly change the transcriptional inhibitory or mutagenic properties of all five examined lesions, suggesting a negligible role of Aag in the repair of these DNA adducts in mammalian cells.

View Article and Find Full Text PDF

Alkylating agents modify DNA and RNA forming adducts that disrupt replication and transcription, trigger cell cycle checkpoints and/or initiate apoptosis. If left unrepaired, some of the damage can be cytotoxic and/or mutagenic. In Escherichia coli, the alkylation repair protein B (AlkB) provides one form of resistance to alkylating agents by eliminating mainly 1-methyladenine and 3-methylcytosine, thereby increasing survival and preventing mutation.

View Article and Find Full Text PDF

The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater.

View Article and Find Full Text PDF

Calcineurin inhibitors are drugs used to suppress the immune system by blocking the nuclear localization of the NFAT transcription factor. Systemic use of these drugs is essential to organ transplantation, but comes at the cost of elevated rates of skin cancer. They have been used topically in atopic dermatitis and other skin diseases on the assumption that they avoid the cancer risk by localized use.

View Article and Find Full Text PDF

This report describes the echocardiographic appearance of an intrapericardial mass and pericardial effusion in an otherwise healthy patient. The tumor was a globular mass attached to the left atrium by a stalk, suggestive of a myxoma. The mass was successfully excised and the patient had an uneventful recovery.

View Article and Find Full Text PDF

Bicyclic monoterpene diols (BMTd) stimulate nitric oxide synthesis in melanoma and neuronal cells, representing cell types arising from embryonic neural crest tissue. This study shows that an equimolar mixture of the BMTd's 2,3-cis/exo-pinanediol and 2,3-cis/exo-camphanediol stimulates nitric oxide synthesis in epithelial cells of the skin, specifically normal human epidermal keratinocytes (NHEK) and normal human microvascular endothelial cells (HMVEC). A 1 mM mixture increased nitric oxide 3-fold in HMVEC in the first 24 h after treatment, and a 2 mM mixture produced an equivalent increase in NHEK.

View Article and Find Full Text PDF

Background: Wu-Zhu-Yu, is an extract prepared from the small berry fruit of Evodia rutaecarpa and is reported to have anti-inflammatory and anti-nociceptic activity. Methyl nicotinate (MN) is known to induce the release of PGD(2) resulting in localized erythema within 30 min after topical application to human skin.

Objective: The purpose of this study was to determine if a defined biomimetic mixture of components of Evodia fruit extract inhibit inflammation in human cells and skin.

View Article and Find Full Text PDF

The use of calcineurin inhibitors in solid organ transplantation results in an increased risk of skin cancer. We examined the effect of these drugs on DNA repair in normal human keratinocytes after ultraviolet B (UVB) irradiation. We found that both cyclosporine A (CsA) and ascomycin inhibited removal of cyclobutane pyrimidine dimers, and that they also inhibited UVB-induced apoptosis.

View Article and Find Full Text PDF