Publications by authors named "Stephanie Napieralski"

Periodic oxygen (O) limitation in humid terrestrial soils likely influences microbial composition, but whether communities share similar responses in disparate environments remains unclear. To test if specific microbial taxa share consistent responses to anoxia in radically different soils, we incubated a rainforest Oxisol and cropland Mollisol under cyclic, time-varying anoxic/oxic cycles in the laboratory. Both soils are known to experience anoxic periods of days to weeks under field conditions; our incubation treatments consisted of anoxic periods of 0, 2, 4, 8, or 12 d followed by 4 d of oxic conditions, repeated for a total of 384 d.

View Article and Find Full Text PDF

Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (Percak-Dennett et al.

View Article and Find Full Text PDF

Microorganisms have long been recognized for their capacity to catalyze the weathering of silicate minerals. While the vast majority of studies on microbially mediated silicate weathering focus on organotrophic metabolism linked to nutrient acquisition, it has been recently demonstrated that chemolithotrophic ferrous iron [Fe(II)] oxidizing bacteria (FeOB) are capable of coupling the oxidation of silicate mineral Fe(II) to metabolic energy generation and cellular growth. In natural systems, complex microbial consortia with diverse metabolic capabilities can exist and interact to influence the biogeochemical cycling of essential elements, including iron.

View Article and Find Full Text PDF

The flux of solutes from the chemical weathering of the continental crust supplies a steady supply of essential nutrients necessary for the maintenance of Earth's biosphere. Promotion of weathering by microorganisms is a well-documented phenomenon and is most often attributed to heterotrophic microbial metabolism for the purposes of nutrient acquisition. Here, we demonstrate the role of chemolithotrophic ferrous iron [Fe(II)]-oxidizing bacteria in biogeochemical weathering of subsurface Fe(II)-silicate minerals at the Luquillo Critical Zone Observatory in Puerto Rico.

View Article and Find Full Text PDF

Carbonate microbialites in lakes can serve as valuable indicators of past environments, so long as the biogenicity and depositional setting of the microbialite can be accurately determined. Late Pleistocene to Early Holocene frondose draping tufa deposits from Winnemucca Dry Lake (Nevada, USA), a subbasin of pluvial Lake Lahontan, were examined in outcrop, petrographically, and geochemically to determine whether microbially induced precipitation is a dominant control on deposition. These observations were compared to modern, actively accumulating microbialites from Fayetteville Green Lake (New York, USA) using similar methods.

View Article and Find Full Text PDF

Oomycete pathogens are commonly associated with soybean root rot and have been estimated to reduce soybean yields in the United States by 1.5 million tons on an annual basis. Limited information exists regarding the frequency and diversity of oomycete species across the major soybean-producing regions in North America.

View Article and Find Full Text PDF