Y-family DNA polymerases are important for conferring cellular resistance to DNA damaging agents in part due to their specialized ability to copy damaged DNA. The Escherichia coli Y-family DNA polymerases are encoded by the umuDC and dinB genes. UmuC and the cleaved form of UmuD, UmuD', form UmuD'2C (pol V), which is able to bypass UV photoproducts such as cyclobutane pyrimidine dimers and 6-4 thymine-thymine dimers, whereas DinB is specialized to copy N(2)-dG adducts, such as N(2)-furfuryl-dG.
View Article and Find Full Text PDFThree-dimensional (3D) DNA crystals have been envisioned as programmable biomaterial scaffolds for creating ordered arrays of biological and nonbiological molecules. Despite having excellent programmable properties, the linearity of the Watson-Crick B-form duplex imposes limitations on 3D crystal design. Predictable noncanonical base pairing motifs have the potential to serve as junctions to connect linear DNA segments into complex 3D lattices.
View Article and Find Full Text PDF