Objectives: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P-4 for the treatment of periodontal disease in a controlled pre-clinical study.
Materials And Methods: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point.
Background: Periodontitis is a chronic inflammation of the tooth supporting structures that finally can lead to tooth loss. As chronic periodontitis is associated with systemic diseases multiple approaches have been followed to support regeneration of the destructed tissue. But very few materials are actually used in the clinic.
View Article and Find Full Text PDFBackground: The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements.
Materials And Methods: In this work, we investigated the effect of two single-component and two complementary β-sheet forming SAP systems on their hydrogel properties such as nanofibrillar architecture, surface charge, and protein adsorption as well as their influence on cell adhesion, morphology, growth, and differentiation.
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics.
View Article and Find Full Text PDFHalogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives and assessed their toxicological profile using a battery of in vitro test systems in order to provide toxicological information before their large-scale production and use.
View Article and Find Full Text PDFThree dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands.
View Article and Find Full Text PDFObjectives: The aim was to test, whether or not soft tissue volume augmentation with a specifically designed collagen matrix (CM), leads to ridge width gain in chronic ridge defects similar to those obtained by an autogenous subepithelial connective tissue graft (SCTG).
Material And Methods: In six dogs, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to chronic ridge defects [CM, SCTG and sham-operated control (Control)]. Dogs were sacrificed at 28 (n = 3) and 84 days (n = 3).
Tissue engineering as an emerging biotechnology sector aims at the in vitro regeneration of diseased tissues and promises to profoundly change medical practice, offering the possibility of regenerating tissues and organs instead of just repairing them (regenerative medicine). Improved healing processes and a higher quality of life are the expected results. This article gives an overview of different technologies for regenerative medicine and presents results of our own current applied research and development.
View Article and Find Full Text PDFGingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity.
View Article and Find Full Text PDF