Background: Dysmorphology evaluation is important for congenital heart disease (CHD) assessment, but there are no prior investigations quantifying the screening performance compared to standardized genetics evaluations. We investigated this through systematic dysmorphology assessment in CHD patients with standardized genetic testing in primarily pediatric patients with CHD.
Methods: Dysmorphology evaluations preceding genetic testing results allowed us to test for associations between dysmorphic status and genetic diagnoses while adjusting for extracardiac anomalies (ECAs).
Introduction: 5p deletion syndrome, also called Cri-du-chat syndrome 5p is a rare genetic syndrome with reports up to 36% of patients are associated with congenital heart defects. We investigated the association between left outflow tract obstruction and Cri-du-chat syndrome.
Methods: A retrospective review of the abnormal microarray cases with congenital heart defects in Children's Hospital of Pittsburgh and the Cytogenomics of Cardiovascular Malformations Consortium.
The use of genetic testing has enhanced the diagnostic accuracy of heritable genetic cardiomyopathies. However, it remains unclear how genetic information is interpreted and incorporated into clinical practice for children with cardiomyopathy. The primary aim of this study was to understand how clinical practice differs regarding sequence variant classifications amongst pediatric cardiologists who treat children with cardiomyopathy.
View Article and Find Full Text PDFExtracardiac anomalies (ECAs) are strong predictors of genetic disorders in infants with congenital heart disease (CHD), but there are no prior studies assessing performance of ECA status as a screen for genetic diagnoses in CHD patients. This retrospective cohort study assessed this in our comprehensive inpatient CHD genetics service focusing on neonates and infants admitted to the intensive care unit (ICU). The performance and diagnostic utility of using ECA status to screen for genetic disorders was assessed using decision curve analysis, a statistical tool to assess clinical utility, determining the threshold of phenotypic screening by ECA versus a Test-All approach.
View Article and Find Full Text PDFCongenital heart disease (CHD) is the most common birth defect and a leading cause of infant mortality. CHD often has a genetic etiology and recent studies demonstrate utility in genetic testing. In clinical practice, decisions around genetic testing choices continue to evolve, and the incorporation of rapid genome sequencing (rGS) in CHD has not been well studied.
View Article and Find Full Text PDFBackground: Pediatric dilated cardiomyopathy often leads to death or cardiac transplantation. We sought to determine whether changes in left ventricular (LV) end-diastolic dimension (LVEDD), LV end-diastolic posterior wall thickness, and LV fractional shortening (LVFS) over time may help predict adverse outcomes.
Methods And Results: We studied children up to 18 years old with dilated cardiomyopathy, enrolled between 1990 and 2009 in the Pediatric Cardiomyopathy Registry.
Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers.
View Article and Find Full Text PDFAnomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR.
View Article and Find Full Text PDFThe establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO.
View Article and Find Full Text PDFBackground: Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements.
Methods: A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.
Alu elements are retrotransposons with ubiquitous presence in the human genome that have contributed to human genomic diversity and health. These approximately 300-bp sequences can cause or mediate disease by disrupting coding/splicing regions in the germline, by insertional mutagenesis in somatic cells, and in promoting formation of copy-number variants. Alu elements may also disrupt epigenetic regulation by affecting non-coding regulatory regions.
View Article and Find Full Text PDFObjective: To evaluate genetic evaluation practices in newborns with the most common birth defect, congenital heart defects (CHD), we determined the prevalence and the yield of genetic evaluation across time and across patient subtypes, before and after implementation of institutional genetic testing guidelines.
Study Design: This was a retrospective, cross-sectional study of 664 hospitalized newborns with CHD using multivariate analyses of genetic evaluation practices across time and patient subtypes.
Results: Genetic testing guidelines for hospitalized newborns with CHD were implemented in 2014, and subsequently genetic testing increased (40% in 2013 and 75% in 2018, OR 5.
FOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease.
View Article and Find Full Text PDFPurpose: For patients with congenital heart disease (CHD), the most common birth defect, genetic evaluation is not universally accepted, and current practices are anecdotal. Here, we analyzed genetic evaluation practices across centers, determined diagnostic yield of testing, and identified phenotypic features associated with abnormal results.
Methods: This is a multicenter cross-sectional study of 5 large children's hospitals, including 2899 children ≤14 months undergoing surgical repair for CHD from 2013 to 2016, followed by multivariate logistics regression analysis.
Background: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice.
Methods: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei.
Cardiovascular genetic counseling has expanded as an established genetic counseling specialty over the last 20 years. Despite guidelines recommending genetic counseling for heritable cardiac diseases, there have been limited descriptions of the practice model types used for different clinical indications seen in this genetic counseling subspecialty. We aimed to describe current clinical practice models used by cardiovascular genetic counselors and to document practice model strengths, challenges, and areas for improvement.
View Article and Find Full Text PDFBackground Our cardiac center established a systematic approach for inpatient cardiovascular genetics evaluations of infants with congenital heart disease, including routine chromosomal microarray (CMA) testing. This provides a new opportunity to investigate correlation between genetic abnormalities and postoperative course. Methods and Results Infants who underwent congenital heart disease surgery as neonates (aged ≤28 days) from 2015 to 2020 were identified.
View Article and Find Full Text PDFHeterotaxy (HTX) is a rare condition of abnormal thoraco-abdominal organ arrangement across the left-right axis of the body. The pathogenesis of HTX includes a derangement of the complex signaling at the left-right organizer early in embryogenesis involving motile and non-motile cilia. It can be inherited as a single-gene disorder, a phenotypic feature of a known genetic syndrome or without any clear genetic etiology.
View Article and Find Full Text PDFPurpose: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants.
Methods: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome.