Publications by authors named "Stephanie M Thibert"

The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity.

View Article and Find Full Text PDF

The global manganese cycle relies on microbes to oxidize soluble Mn(II) to insoluble Mn(IV) oxides. Some microbes require peroxide or superoxide as oxidants, but others can use O directly, via multicopper oxidase (MCO) enzymes. One of these, MnxG from strain PL-12, was isolated in tight association with small accessory proteins, MnxE and MnxF.

View Article and Find Full Text PDF

Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target.

View Article and Find Full Text PDF

High throughput native mass spectrometry analysis of proteins and protein complexes has been enabled by recent development of infusion and liquid chromatography (LC) systems, which often include complete LC pumps without fully utilizing their gradient flows. We demonstrated a lower-cost infusion cart for native mass spectrometry applications using a single isocratic solvent pump that can operate at both nano- and high-flow configurations (0.05-150 μL/min) for both infusion and online buffer exchange experiments.

View Article and Find Full Text PDF

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs).

View Article and Find Full Text PDF