HIV-associated neurocognitive disorder (HAND) remains prevalent despite antiretroviral therapy and involves white matter damage in the brain. Although iron is essential for myelination and myelin maintenance/repair, its role in HAND is largely unexplored. We tested the hypotheses that cerebrospinal fluid (CSF) heavy-chain ferritin (Fth1) and transferrin, proteins integral to iron delivery and myelination, are associated with neurocognitive performance in people with HIV (PWH).
View Article and Find Full Text PDFThe extent to which rats express anxiety-like behavior on the elevated plus-maze (EPM) depends on their previous maze experience. Open-arm avoidance develops in maze-experienced rats, and is often accompanied by a diminished anxiolytic response to benzodiazepines. Regions of the dorsal raphe nucleus (DRN) were examined in male Sprague-Dawley rats using c-Fos and serotonin immunohistochemistry following a single exposure, a second exposure or no exposure to the EPM.
View Article and Find Full Text PDFBackground: HIV-associated neurocognitive disorder (HAND) remains common, despite antiretroviral therapy (ART). HIV dysregulates iron metabolism, but cerebrospinal fluid (CSF) levels of iron and iron-transport proteins in HIV-infected (HIV+) persons are largely unknown. The objectives of this study were to characterize CSF iron-related biomarkers in HIV+ adults and explore their relationships to known predictors of HAND.
View Article and Find Full Text PDFIn this article, we review the original findings from MRI and autopsy studies that demonstrated brain iron status is insufficient in individuals with restless legs syndrome (RLS). The concept of deficient brain iron status is supported by proteomic studies from cerebrospinal fluid (CSF) and from the clinical findings where intervention with iron, either dietary or intravenous, can improve RLS symptoms. Therefore, we include a section on peripheral iron status and how peripheral status may influence both the RLS symptoms and treatment strategy.
View Article and Find Full Text PDFBackground: Restless Legs Syndrome/Willis-Ekbom Disease (RLS/WED) is a sensorimotor disorder that causes patients to experience overwhelming and distressing sensations in the legs compelling the patient to move their legs to provide relief. The purpose of this study was to determine if biomarkers in the cerebrospinal fluid can distinguish RLS/WED patients from neurological controls.
Methods: We obtained CSF samples by lumbar puncture from 5 early-onset RLS/WED patients and 5 controls.
Iron deficiency affects nearly 2 billion people worldwide, with pregnant women and young children being most severely impacted. Sustained anemia during the first year of life can cause cognitive, attention and motor deficits, which may persist despite iron supplementation. We conducted iTRAQ analyses on cerebrospinal fluid (CSF) from infant monkeys (Macaca mulatta) to identify differential protein expression associated with early iron deficiency.
View Article and Find Full Text PDFRestless legs syndrome is a neurological disorder characterized by an urgency to move the legs during periods of rest. Data from a variety of sources provide a compelling argument that the amount of iron in the brain is lower in individuals with restless legs syndrome compared with neurologically normal individuals. Moreover, a significant percentage of patients with restless legs syndrome are responsive to intravenous iron therapy.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
November 2009
Restless legs syndrome (RLS) is a neurological disorder that is thought to involve decreased iron availability in the brain. Iron is required for oxidative metabolism and plays a critical role in redox reactions in mitochondria. The recent discovery of mitochondrial ferritin (FtMt) provided the opportunity to identify a potential correlation between iron and mitochondrial function in RLS.
View Article and Find Full Text PDFObjective: Studies using cerebrospinal fluid, magnetic resonance imaging, and autopsy tissue have implicated a primary role for brain iron insufficiency in restless legs syndrome (RLS). If the abnormalities of brain iron regulation reflect a basic disturbance of iron metabolism, then this might be expressed at least partially in some peripheral systems. Thus the study aim was to determine whether patients with RLS and control subjects show differences in lymphocyte iron regulator proteins.
View Article and Find Full Text PDFHFE mutations have traditionally been associated with the iron overload disorder known as hemochromatosis. Recently, it has become clear that the two most common mutations in the HFE gene, H63D and C282Y, may be genetic modifiers for risk of neurodegenerative disorders and cancer, respectively. We developed human neuroblastoma stable cell lines that express either wild-type (WT) or mutant HFE to determine the cellular consequences of the mutant forms of HFE.
View Article and Find Full Text PDFHypoxia-inducible factor (HIF) prolyl 4-hydroxylases are a family of iron- and 2-oxoglutarate-dependent dioxygenases that negatively regulate the stability of several proteins that have established roles in adaptation to hypoxic or oxidative stress. These proteins include the transcriptional activators HIF-1alpha and HIF-2alpha. The ability of the inhibitors of HIF prolyl 4-hydroxylases to stabilize proteins involved in adaptation in neurons and to prevent neuronal injury remains unclear.
View Article and Find Full Text PDFInteraction between iron regulatory proteins and iron responsive elements on certain mRNAs is at the core of regulation of intracellular iron homeostasis. Previous results suggested that in cultured cells iron regulatory proteins (IRPs) exist in cytosolic and microsomal subcellular locations and that this distribution is affected by cellular iron status. In this study, we tested the hypothesis that the membrane-associated fractions of iron regulatory proteins are specifically in the endoplasmic reticulum and Golgi membranes.
View Article and Find Full Text PDFThrough the insertion of an iron responsive element (IRE) into a pd2ECFP vector, we demonstrate a noninvasive method for determining alterations in iron regulatory protein (IRP) activity that results in changes in protein translation in living cells. This construct takes advantage of the specifically iron-dependent interaction between IRPs that bind IREs on mRNAs to posttranscriptionally regulate protein expression in a manner similar to ferritin production. In this report, we demonstrate, using HEK-293 cells, that an IRE-driven fluorescent reporter can be used to observe changes in cellular iron status that are sufficient to alter protein synthesis.
View Article and Find Full Text PDF