Background: Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats.
Methods: A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats.
Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration.
View Article and Find Full Text PDFFemale sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats.
View Article and Find Full Text PDFAdult neurogenesis in the dentate gyrus plays an important role for pattern separation, the process of separating similar inputs and forming distinct neural representations. Estradiol modulates neurogenesis and hippocampus function, but to date no examination of estradiol's effects on pattern separation have been conducted. Here, we examined estrogenic regulation of adult neurogenesis and functional connectivity in the hippocampus after the spatial pattern separation task in female rats.
View Article and Find Full Text PDFFemales show greater benefits of exercise on cognition in both humans and rodents, which may be related to brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP), the Val66Met polymorphism, within the human BDNF gene, causes impaired activity-dependent secretion of neuronal BDNF and impairments to some forms of memory. We evaluated whether sex and BDNF genotype (Val66Met polymorphism (Met/Met) versus wild-type (Val/Val)) influenced the ability of voluntary running to enhance cognition and hippocampal neurogenesis in mice.
View Article and Find Full Text PDFBackground: Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias in rats that varied with age.
View Article and Find Full Text PDFDecision-making is a complex process essential to daily adaptation in many species. Risk is an inherent aspect of decision-making and it is influenced by gonadal hormones. Testosterone and 17β-estradiol may modulate decision making and impact the mesocorticolimbic dopamine pathway.
View Article and Find Full Text PDFOxytocin regulates social behaviours, pair bonding and hippocampal neurogenesis but most studies have used adult males. Our study investigated the effects of oxytocin on social investigation and adult hippocampal neurogenesis in male and female rats. Oxytocin has poor penetration of the blood-brain barrier, therefore we tested a nanoparticle drug, TRIOZAN™ (Ovensa Inc.
View Article and Find Full Text PDFOvarian hormones influence the outcomes of stress exposure and are implicated in stress-related disorders including depression, yet their roles are often complex and seemingly contradictory. Importantly, depression and stress exposure are associated with immune dysregulation, and ovarian hormones have immunomodulatory properties. However, how ovarian hormones can influence the inflammatory outcomes of stress exposure is poorly understood.
View Article and Find Full Text PDFThe estrogen receptor (ER) mechanisms by which 17β-estradiol influences depressive-like behaviour have primarily been investigated acutely and not within an animal model of depression. Therefore, the current study aimed to dissect the contribution of ERα and ERβ to the effects of 17β-estradiol under non-stress and chronic stress conditions. Ovariectomized (OVX) or sham-operated mice were treated chronically (47 days) with 17β-estradiol (E2), the ERβ agonist diarylpropionitrile (DPN), the ERα agonist propylpyrazole-triol (PPT), or vehicle.
View Article and Find Full Text PDFAndrogens (testosterone and DHT) increase adult hippocampal neurogenesis by increasing survival of new neurons in male rats and mice via an androgen receptor pathway, but it is not known whether androgens regulate neurogenesis in female rats and whether the effect is age-dependent. We investigated the effects of DHT, a potent androgen, on neurogenesis in young adult and middle-aged male and female rats. Rats were gonadectomized and injected with the DNA synthesis marker bromodeoxyuridine (BrdU).
View Article and Find Full Text PDFThe maternal brain displays considerable plasticity, and motherhood is associated with changes in affective and cognitive function. Motherhood can alter the trajectory of brain aging, including modifications to neuroplasticity and cognition. Here, we investigated the short- and long-term effects of motherhood on hippocampal neurogenesis, microglial density and morphology, and circulating cytokines, domains known to be altered with age and implicated in cognition and mood.
View Article and Find Full Text PDFMenopause is associated with cognitive decline, and hormone therapies (HTs) may improve cognition depending on type and timing of HTs. Previous parity may influence cognition in later life. We investigated how primiparity and long-term ovariectomy influence cognition, neurogenesis, hormones, cytokines, and neuronal activation in middle-aged rats in response to Premarin, an HT.
View Article and Find Full Text PDFTreating postpartum depression (PPD) with pharmacological antidepressants like fluoxetine (FLX) is complicated because these drugs can remain active in breast milk and potentially affect infant development. Alternatively, non-pharmacological treatments such as exercise are associated with beneficial effects on infant development but its potential ability to counter the effects of PPD are largely unknown. To investigate this, we treated dams with corticosterone (CORT) or vehicle (sesame oil) from postpartum days 2-25 to model PPD.
View Article and Find Full Text PDFPerinatal depression (PND) affects 15% of women. During the perinatal period both stress- and gonadal hormones fluctuate widely. Putatively, these fluctuations are involved in PND disease mechanisms.
View Article and Find Full Text PDFPostpartum depression affects approximately 15% of mothers. Unfortunately, treatment options for postpartum depression are limited. Pharmacological antidepressants such as fluoxetine (FLX) can be controversial due to inconclusive evidence of efficacy during the postpartum and concerns of neonatal exposure to antidepressants.
View Article and Find Full Text PDFBackground: Postpartum depression affects approximately 15% of mothers and represents a form of early life adversity for developing offspring. Postpartum depression can be treated with prescription antidepressants like fluoxetine (FLX). However, FLX can remain active in breast milk, raising concerns about the consequences of neonatal FLX exposure.
View Article and Find Full Text PDFDepression is more prevalent in women than in men, and women are at a heightened risk for depression during the postpartum and perimenopause. There is also evidence to suggest that the ovarian hormone milieu may dictate antidepressant efficacy. Thus, it is important to investigate the role of ovarian hormones in the pathogenesis of depression and in the mechanisms that may underlie antidepressant efficacy.
View Article and Find Full Text PDFHypogonadal men are more likely to develop depression, while testosterone supplementation shows antidepressant-like effects in hypogonadal men and facilitates antidepressant efficacy. Depression is associated with hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and testosterone exerts suppressive effects on the HPA axis. The hippocampus also plays a role in the feedback regulation of the HPA axis, and depressed patients show reduced hippocampal neuroplasticity.
View Article and Find Full Text PDFAntidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories.
View Article and Find Full Text PDFPostpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD.
View Article and Find Full Text PDFAdult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training.
View Article and Find Full Text PDFEstradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol's effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.
View Article and Find Full Text PDFMenopause is associated with cognitive decline, and previous parity can increase or delay the trajectory of cognitive aging. Furthermore, parity enables the hippocampus to respond to estrogens in middle age. The present study investigated how previous parity and estrogens influence cognition, neurogenesis, and neuronal activation in response to memory retrieval in the hippocampus of middle-aged females.
View Article and Find Full Text PDFReproductive experiences in females comprise substantial hormonal and experiential changes and can exert long lasting changes in cognitive function, stress physiology, and brain plasticity. The goal of this research was to determine whether prior reproductive experience could alter a prefrontal-cortical dependent form of learning (strategy set shifting) in an operant box. In this study, female Sprague-Dawley rats were mated and mothered once or twice to produce either primiparous or biparous dams, respectively.
View Article and Find Full Text PDF