Publications by authors named "Stephanie Laufs"

Gene transfer to hematopoietic stem cells with integrating vectors not only allows sustained correction of monogenic diseases but also tracking of individual clones in vivo. Quantitative real-time PCR (qPCR) has been shown to be an accurate method to quantify individual stem cell clones, yet due to frequently limited amounts of target material (especially in clinical studies), it is not useful for large-scale analyses. To explore whether vector integration site (IS) recovery techniques may be suitable to describe clonal contributions if combined with next-generation sequencing techniques, we designed artificial ISs of different sizes which were mixed to simulate defined clonal situations in clinical settings.

View Article and Find Full Text PDF

Objectives: The rapid early-phase decay of plasma HIV-1 RNA during integrase inhibitor-based therapy is not fully understood. The accumulation of biologically active episomal HIV-1 cDNAs, following aborted integration, could contribute to antiviral potency in vivo.

Methods: This prospective, controlled clinical observation study explored raltegravir's impact on the dynamics of HIV-1 RNA in plasma, and concentrations of total HIV-1 cDNA, episomal 2-long terminal repeat (LTR) circles and HIV-1 integrants in peripheral blood mononuclear cells (PBMC).

View Article and Find Full Text PDF

Nonintegrating gene delivery vectors have an improved safety profile compared with integrating vectors, but transgene retention is problematic as nonreplicating episomes are progressively and rapidly diluted out through cell division. We have developed an integration-deficient lentiviral vector (IDLV) system generating mitotically stable episomes capable of long-term transgene expression. We found that a transient cell cycle arrest at the time of transduction with IDLVs resulted in 13-45% of Chinese hamster ovary (CHO) cells expressing the transgene for over 100 cell generations in the absence of selection.

View Article and Find Full Text PDF

Purpose: In colorectal cancer, increased expression of the CXC chemokine receptor 4 (CXCR4) has been shown to provoke metastatic disease due to the interaction with its ligand stromal cell-derived factor-1 (SDF-1). Recently, a second SDF-1 receptor, CXCR7, was found to enhance tumor growth in solid tumors. Albeit signaling cascades via SDF-1/CXCR4 have been intensively studied, the significance of the SDF-1/CXCR7-induced intracellular communication triggering malignancy is still only marginally understood.

View Article and Find Full Text PDF

Background: Signaling through stromal cell-derived factor-1α (SDF-1α), strongly secreted by bone marrow stromal cells and the CXC chemokine receptor 4 (CXCR4) exposed on tumor cells has pivotal roles in proliferation, metastasis, and tumor cell "dormancy." Dormancy is associated with cytostatic drug resistance and is probably a property of tumor stem cells and minimal residual disease. Thus, hampering the SDF-1α/CXCR4 cross talk by a CXCR4 antagonist like Plerixafor (AMD3100) should overcome tumor cell dormancy bymobilization of tumor cells from "sanctuary" niches.

View Article and Find Full Text PDF

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is an epigenetic phenomenon. It has been suggested that iPSC retain some tissue-specific memory whereas little is known about interindividual epigenetic variation. We have reprogrammed mesenchymal stromal cells from human bone marrow (iP-MSC) and compared their DNA methylation profiles with initial MSC and embryonic stem cells (ESCs) using high-density DNA methylation arrays covering more than 450,000 CpG sites.

View Article and Find Full Text PDF

Background: The phenotypic expression of any given heterogeneous tissue type is the composite of interactions between individual cell types governed principally by inherent, cell-specific molecular mechanisms.

Materials And Methods: Using a combination of laser-capture microdissection, oligonucleotide microarrays, bioinformatic and statistical tools, we analyzed colorectal cancer tissues in order to spot the significant pathways that were differentially deregulated between the epithelial and stromal compartments and compared these alongside the ones of whole tissue dissection.

Results: The stromal pathway profiles were very similar to the ones of whole tissue, in contrast to the epithelial input, with stroma emerging as the major determinant of the cancer phenotype.

View Article and Find Full Text PDF

Background: The development of distant metastasis is associated with poor outcome in patients with colorectal cancer (CRC). The stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) have pivotal roles in the chemotaxis of migrating tumor cells during metastasis. Thus, hampering the SDF-1/CXCR4 cross-talk is a promising strategy to suppress metastasis.

View Article and Find Full Text PDF

Gene transfer into chronic myelogenous leukemia (CML) cells may become of relevance for overcoming therapy resistance. Single-stranded pseudotyped adeno-associated viruses of serotypes 2/1 to 2/6 (ssAAV2/1-ssAAV2/6) were screened on human CML cell lines and primary cells to determine gene transfer efficiency. Additionally, double-stranded self-complementary vectors (dsAAVs) were used to determine possible second-strand synthesis limitations.

View Article and Find Full Text PDF

Gene transfer of mutant O(6)-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSCs) protects hematopoiesis from alkylating agents and allows efficient in vivo selection of transduced HSCs. However, insertional mutagenesis, high regenerative stress associated with selection, and the genotoxic potential of alkylating drugs represent considerable risk factors for clinical applications of this approach. Therefore, we investigated the long-term effect of MGMT(P140K) gene transfer followed by repetitive, dose-intensive treatment with alkylating agents in a murine serial bone marrow transplant model and assessed clonality of hematopoiesis up to tertiary recipients.

View Article and Find Full Text PDF

Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated.

View Article and Find Full Text PDF

Background Aims: Transplantation of allogeneic hematopoietic stem cells (HSC) within the framework of hematologic oncology or inherited diseases may be associated with complications such as engraftment failure and long-term pancytopenia. HSC engraftment can be improved, for example by co-transplantation with mesenchymal stem cells (MSC). Recently, a new multipotent MSC line from umbilical cord blood, unrestricted somatic stem cells (USSC), has been described.

View Article and Find Full Text PDF

Background Aims: Previous studies in xenograft models have shown that human peripheral blood progenitor cells (PBPC) mobilized with the CXCR4 antagonist plerixafor (AMD3100) have a higher bone marrow (BM) reconstitution potential than granulocyte-colony-stimulating factor (G-CSF)-mobilized PBPC.

Methods: PBPC obtained during G-CSF-supported mobilization before and after a supplementary administration of AMD3100 from patients with multiple myeloma and non-Hodgkin's lymphoma (n=15; phase II study) were investigated for co-expression of primitive and lineage-associated markers, their proliferative activity in vitro and repopulation potential after clinical transplantation.

Results: A significant increase in primitive CD34+ CD38(-) cells was observed in intraindividual comparisons of all patients after administration of G-CSF+AMD3100 (peripheral blood: median 8-fold, range 2,4-fold - 39-fold) compared with G-CSF alone.

View Article and Find Full Text PDF

Background And Aims: Because of their pluripotency, human CD34(+) peripheral blood progenitor cells (PBPC) are targets of interest for the treatment of many acquired and inherited disorders using gene therapeutic approaches. Unfortunately, most current vector systems lack either sufficient transduction efficiency or an appropriate safety profile. Standard single-stranded recombinant adeno-associated virus 2 (AAV2)-based vectors offer an advantageous safety profile, yet lack the required efficiency in human PBPC.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research indicates that HIV integration in the human genome has specific preferences regarding where it inserts, particularly avoiding areas close to transcription start sites (TSS) of genes.
  • - A thorough analysis of over 46,000 HIV vector insertion sites found that HIV vectors generally avoid a 1 kb region upstream and downstream of TSS, which is referred to as the 'insertional gap.'
  • - Genes whose TSS falls within this gap exhibit significantly lower expression levels compared to those outside it, suggesting that these regions may be less favorable or physically inaccessible for HIV integration.
View Article and Find Full Text PDF

Despite Imatinib's remarkable success in chronic myelogenous leukemia treatment, monotherapy frequently causes resistance, underlining the rationale for combination chemotherapy. A potential approach would be interrupting the SDF-1/CXCR4 axis using the selective CXCR4 antagonist Plerixafor (previously AMD3100), as this axis has been reported to provide survival-enhancing effects to myeloid progenitor cells. By efficient CXCR4 blocking in the CXCR4(+)/BCR-ABL(+) cell line BV-173, plerixafor (1-100 muM) significantly inhibits SDF-1alpha-mediated chemotaxis and cell migration toward the murine stroma cell line FBMD-1.

View Article and Find Full Text PDF

Background And Purpose: Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation.

View Article and Find Full Text PDF

Background: For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low.

View Article and Find Full Text PDF

Objective: Currently standard recombinant adeno-associated virus serotype 2(rAAV2)-based vectors lack the efficiency for gene transfer into primary human CD34(+) peripheral blood progenitor cells (PBPC).

Materials And Methods: An advancement in vector development now allows the generation of rAAV capsid mutants that offer higher target cell efficiency and specificity. To increase the gene transfer into hematopoietic progenitor cells, we applied this method for the first time on primary human CD34(+) PBPC cells.

View Article and Find Full Text PDF

Tumor radiotherapy with large-field irradiation results in an increase in apoptosis of the radiosensitive hematopoietic stem cells (CD34(+)). The aim of this study was to demonstrate the radioprotective potential of MDR1 overexpression in human CD34(+) cells using a lentiviral self-inactivating vector. Transduced human undifferentiated CD34(+) cells were irradiated with 0-8 Gy and held in liquid culture under myeloid-specific maturation conditions.

View Article and Find Full Text PDF

Background: Granulocyte-colony-stimulating factor (G-CSF) is known to affect functional activity and antigen expression of neutrophil granulocytes. Beside nonglycosylated filgrastim and glycosylated lenograstim, pegylated filgrastim (pegfilgrastim) has recently been introduced for single administration into clinical use.

Study Design And Methods: Here, granulocytes from 27 patients with nonmyeloid malignancies were compared functionally (migration, reactive oxygen species production, and G-CSF serum levels) and phenotypically (cell surface antigen expression) before and after G-CSF administration.

View Article and Find Full Text PDF

Background: Recent observations of insertional mutagenesis in preclinical and clinical settings emphasize the relevance of investigating comprehensively the spectrum of integration sites targeted by specific vectors.

Methods: We followed the engraftment of lentivirally transduced human cord blood (CB) progenitor cells after transplantation into NOD/SCID mice using a self-inactivating HIV-1-derived vector expressing the enhanced green fluorescent protein (EGFP).

Results: The mean of transduction of CD34(+) CB cells was 41%, as deduced from the percentage of EGFP(+) cells before transplantation.

View Article and Find Full Text PDF

Overexpression of P-glycoprotein (P-gp), the product of the MDR1 (multidrug resistance 1) gene, might complement chemotherapy and radiotherapy in the treatment of tumors. However, for safety and mechanistic reasons, it is important to know whether MDR1 overexpression influences the expression of other genes. Therefore, we analyzed differential gene expression in cells of the human lymphoblast cell line TK6 retrovirally transduced with MDR1 using the GeneChip Human Genome U133 Plus2.

View Article and Find Full Text PDF

The relevance of the u-PA system in mediating tumor-associated proteolysis, invasion and metastasis, amongst other phenomena associated with tumor progression, has been clearly demonstrated in diverse cancer entities. This review will update on the biological and clinical relevance of the urokinase-receptor (u-PAR). Specifically, the article focuses on the potential importance of u-PAR for the development of minimal residual disease in solid cancer, and in this context reviews the biological relevance of the u-PAR for tumor cell dormancy.

View Article and Find Full Text PDF