Publications by authors named "Stephanie L Hummel"

The Great Lakes Restoration Initiative aims to protect and restore the nation's largest freshwater resource, in part, by furthering our understanding of the effects of contaminants of emerging concern (CECs) and chemical mixtures on aquatic and terrestrial organisms. To address this goal, an interagency team conducted field studies at sites along the Maumee River in Ohio, USA, in 2016-2017, monitoring CEC levels along with diverse in vitro and in vivo biological effects in ecologically relevant species (fathead minnows, tree swallows, and golden clams). The objective of the present work was to prioritize the CECs in these studies for further monitoring and assessment by determining if there are patterns in chemical-bioeffect relations across data sets, species, and response types that indicate relatively high or low hazard to aquatic life from CEC exposure.

View Article and Find Full Text PDF

Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle.

View Article and Find Full Text PDF

Assessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs.

View Article and Find Full Text PDF

Widespread occurrence of emerging contaminants in Great Lakes tributaries led to the development and publication of a vulnerability index (VI) to assess the potential exposure of aquatic communities to chemicals of emerging concern (CEC) in the Great Lakes basin. The robust nature of the VI was tested to evaluate the underlying statistical model and expand the spatial domain of the index. Data collected at 131 new sampling sites (Test 1) and published data from independent studies (Test 2) were used to test the model predictions.

View Article and Find Full Text PDF

Lake sturgeon (Acipenser fulvescens) populations have significantly declined across their historic range, in large part due to anthropogenic impacts that have likely been exacerbated by the life-history traits of this slow-growing and long-lived species. We developed a population model to explore how Contaminants of Emerging Concern (CECs) impact lake sturgeon populations. We explored how different physiological modes of action (pMoAs) of CECs impacted population abundance and recovery and how different simulated management actions could enable recovery.

View Article and Find Full Text PDF

Contaminants of emerging concern (CECs; e.g., pharmaceuticals, flame retardants, pesticides, and industrial chemicals) are omnipresent throughout tributaries to the Great Lakes.

View Article and Find Full Text PDF

Contaminants of emerging concern (CECs) are ubiquitous, present in complex chemical mixtures, and represent a threat to the Great Lake ecosystem. Mitigation strategies are needed to protect populations of key species, but knowledge about ecological and biological effects of CECs at the population level are limited. In this study, we combined laboratory data on CEC effects at the individual-level with in-situ CEC concentration data in a walleye (Sander vitreus) population model to simulate the effectiveness of different CEC mitigation strategies in the Maumee River and Lake Erie.

View Article and Find Full Text PDF

Recent research suggests contaminants of emerging concern (CECs) are widespread and environmentally relevant concentrations can impact fishes. However, little is known about impacts of CECs to long-lived or rare species. The objective of this study was to characterize CEC concentrations in lake sturgeon (Acipenser fulvescens) serum and gametes.

View Article and Find Full Text PDF

Agricultural and urban contaminants are an environmental concern because runoff may contaminate aquatic ecosystems, resulting in stress for exposed fish. The objective of the present controlled, field-based study was to assess the impacts of high-intensity agriculture and urban land use on multiple life stages of the fathead minnow (Pimephales promelas), using the Maumee River (Toledo, OH, USA) as a case study. Laboratory cultured adult and larval fathead minnows were exposed for 21 d, and embryos were exposed until hatching to site-specific water along the lower reach of the Maumee River.

View Article and Find Full Text PDF

Chemicals of emerging concern (CECs) are introduced into the aquatic environment via various sources, posing a potential risk to aquatic organisms. Previous studies have identified relationships between the presence of CECs in water and broad-scale watershed characteristics. However, relationships between the presence of CECs and source-related watershed characteristics have not been explored across the Great Lakes basin.

View Article and Find Full Text PDF

Today's conservation challenges are complex. Solving these challenges often requires scientific collaborations that extend beyond the scope, expertise, and capacity of any single agency, organization, or institution. Conservation efforts can benefit from interdisciplinary collaboration, scientific and technological innovations, and the leveraging of capacity and resources among partners.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuk3rej4291rrvjkj48h9gdpi7nju915b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once