Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial β-diversity along vertical (0-240 cm of soil depth) and horizontal spatial dimensions (~500,000 km ) in the U.
View Article and Find Full Text PDFRoot exudates shape the rhizosphere microbiome, but little is known about the specific compounds in root exudates that are important. Here, we investigated the impacts of the plant-synthesized phytohormones indole-3-acetic acid (IAA) and abscisic acid (ABA) exuded by roots on the maize rhizobacterial communities. To identify maize genotypes that differed in the root exudate concentrations of IAA and ABA, we screened hundreds of inbred lines using a semi-hydroponic system.
View Article and Find Full Text PDFRoot exudates contribute to shaping the root-associated microbiomes, but it is unclear which of the many exudate compounds are important in this process. Here, we focused on understanding the influence of sugars and jasmonic acid (JA) concentrations in maize root exudates on the rhizobacterial communities. Twelve maize genotypes were identified with variable concentrations of sugars and JA based on a screening of 240 maize genotypes grown in a semihydroponic system.
View Article and Find Full Text PDF