Publications by authors named "Stephanie L Courchesne"

Disruptions in axonal transport have been implicated in a wide range of neurodegenerative diseases. Cramping 1 (Cra1/+) and Legs at odd angles (Loa/+) mice, with hypomorphic mutations in the dynein heavy chain 1 gene, which encodes the ATPase of the retrograde motor protein dynein, were originally reported to exhibit late onset motor neuron disease. Subsequent, conflicting reports suggested that sensory neuron disease without motor neuron loss underlies the phenotypes of Cra1/+ and Loa/+ mice.

View Article and Find Full Text PDF

Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small-diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons.

View Article and Find Full Text PDF

Survival and maturation of dorsal root ganglia sensory neurons during development depend on target-derived neurotrophins. These target-derived signals must be transmitted across long distances to alter gene expression. Here, we address the possibility that long-range retrograde signals initiated by target-derived neurotrophins activate a specialized transcriptional program.

View Article and Find Full Text PDF

Neurons extend axonal processes over long distances, necessitating efficient transport mechanisms to convey target-derived neurotrophic survival signals from remote distal axons to cell bodies. Retrograde transport, powered by dynein motors, supplies cell bodies with survival signals in the form of 'signaling endosomes'. In this review, we will discuss new advances in our understanding of the motor proteins that bind to and move signaling components in a retrograde direction and discuss mechanisms that might specify distinct neuronal responses to spatially restricted neurotrophin signals.

View Article and Find Full Text PDF

Entorhinal cortex lesions induce significant reorganization of several homotypic and heterotypic inputs to the hippocampus. This investigation determined whether surviving heterotypic inputs after bilateral entorhinal lesions would support the acquisition of a learned alternation task. Rats with entorhinal lesions or sham operations were trained to acquire a spatial alternation task.

View Article and Find Full Text PDF