Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues.
View Article and Find Full Text PDFNoncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control.
View Article and Find Full Text PDFBackground: When interpreting sequencing data from multiple spatial or longitudinal biopsies, detecting sample mix-ups is essential, yet more difficult than in studies of germline variation. In most genomic studies of tumors, genetic variation is detected through pairwise comparisons of the tumor and a matched normal tissue from the sample donor. In many cases, only somatic variants are reported, which hinders the use of existing tools that detect sample swaps solely based on genotypes of inherited variants.
View Article and Find Full Text PDFTypically, it is assumed that the maternal and paternal alleles for most genes are equally expressed. Known exceptions include canonical imprinted genes, random X-chromosome inactivation, olfactory receptors and clustered protocadherins. Here, we highlight recent studies showing that allele-specific expression is frequent in the genome and involves subtypes of epigenetic allelic effects that differ in terms of heritability, clonality and stability over time.
View Article and Find Full Text PDFBackground: Progressive supranuclear palsy is a neurodegenerative tauopathy manifesting clinically as a progressive akinetic-rigid syndrome. In this study, we sought to identify genetic variants influencing PSP susceptibility through a genome-wide association analysis of a cohort of well-characterized patients who had participated in the Neuroprotection and Natural History in Parkinson Plus Syndromes and Blood Brain Barrier in Parkinson Plus Syndromes studies.
Methods: We genotyped single-nucleotide polymorphisms in 283 PSP cases from the United Kingdom, Germany, and France and compared these with genotypes from 4472 controls.
SV-plaudit is a framework for rapidly curating structural variant (SV) predictions. For each SV, we generate an image that visualizes the coverage and alignment signals from a set of samples. Images are uploaded to our cloud framework where users assess the quality of each image using a client-side web application.
View Article and Find Full Text PDFRare mutations, including copy-number variants (CNVs), contribute significantly to autism spectrum disorder (ASD) risk. Although their importance has been established in families with only one affected child (simplex families), the contribution of both de novo and inherited CNVs to ASD in families with multiple affected individuals (multiplex families) is less well understood. We analyzed 1,532 families from the Autism Genetic Resource Exchange (AGRE) to assess the impact of de novo and rare CNVs on ASD risk in multiplex families.
View Article and Find Full Text PDFPrions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein.
View Article and Find Full Text PDF