Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner.
View Article and Find Full Text PDFLysosomal cathepsins are proteolytic enzymes increasingly recognized as prognostic markers and potential therapeutic targets in a variety of diseases. In those conditions, the cathepsins are mostly overexpressed, thereby driving the respective pathogenic processes. Although less known, there are also diseases with a genetic deficiency of cathepsins.
View Article and Find Full Text PDFCathepsin D (Ctsd) is a ubiquitously expressed aspartic protease functioning primarily in the acidic endosomal/lysosomal cell compartment. At an age of 26 ± 1 days, mice with constitutive Ctsd deficiency (Ctsd(-/-)) die from a neurodegenerative lysosomal storage disease equivalent to the congenital neuronal ceroid lipofuscinosis (NCL) type 10 in humans. In addition to neurodegeneration, Ctsd(-/-) mice exhibit a loss of CD4(+)/CD8(+)-double-positive thymocytes and an atrophy of the intestinal mucosa.
View Article and Find Full Text PDF