The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.
View Article and Find Full Text PDFSafe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated.
View Article and Find Full Text PDFThe emergence of multiple concurrent infectious diseases localized in the world creates a complex burden on global public health systems. Outbreaks of Ebola, Lassa, and Marburg viruses in overlapping regions of central and West Africa and the co-circulation of Zika, Dengue, and Chikungunya viruses in areas with A. aegypti mosquitos highlight the need for a rapidly deployable, safe, and versatile vaccine platform readily available to respond.
View Article and Find Full Text PDFThe combination of optimized DNA constructs, improved formulations and advanced in vivo electroporation (EP) has been shown to generate potent and efficacious immune responses in the clinic. Needle-free jet injection has also been reported to improve DNA vaccine delivery over standard needle and syringe in clinical trials. Here we investigated the impact of combined jet injection and EP (Jet-EP) delivery on muscle transfection efficiency and DNA vaccine immunogenicity in rabbits and nonhuman primates (NHPs) compared to jet injection alone.
View Article and Find Full Text PDFLassa virus (LASV) is a hemorrhagic fever virus of the Arenaviridae family with high rates of mortality and co-morbidities, including chronic seizures and permanent bilateral or unilateral deafness. LASV is endemic in West Africa and Lassa fever accounts for 10-16% of hospitalizations annually in parts of Sierra Leone and Liberia according to the CDC. An ongoing outbreak in Nigeria has resulted in 144 deaths in 568 cases confirmed as LASV as of November 2018, with many more suspected, highlighting the urgent need for a vaccine to prevent this severe disease.
View Article and Find Full Text PDFClonal expansion of T cells is vital to adaptive immunity, yet this process must be tightly controlled to prevent autoimmune disease. The serine/threonine kinase death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK2) is a negative regulator of TCR signaling and sets the threshold for the activation of naive and memory T cells and selected thymocytes. Despite enhanced T cell activation, Drak2(-/-) mice are resistant to experimental autoimmune encephalomyelitis, an autoimmune demyelinating disease that resembles multiple sclerosis.
View Article and Find Full Text PDFFas-associated death domain protein (FADD) constitutes an essential component of TNFR-induced apoptotic signaling. Paradoxically, FADD has also been shown to be crucial for lymphocyte development and activation. In this study, we report that FADD is necessary for long-term maintenance of S6 kinase (S6K) activity.
View Article and Find Full Text PDFThe signaling events involved in T cell trafficking into the central nervous system (CNS) following viral infection are not fully understood. Intracerebral infection of mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by an immune-mediated demyelinating disease. Although chemokine signaling is critical in promoting T cell infiltration into the CNS and control of viral replication, additional signaling pathways have not been completely explored.
View Article and Find Full Text PDF