Publications by authors named "Stephanie J DeWitte-Orr"

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV), a double stranded (ds)DNA virus, is a pathogen that causes massive mortalities in crustaceans worldwide. The present study focuses on using dsRNA to induce sequence-independent immune responses to control virus replication. DsRNA is a well characterized innate immune stimulant in vertebrates and effectively induces an antiviral state.

View Article and Find Full Text PDF

Nanoparticle carriers enable the multivalent delivery of nucleic acids to cells and protect them from degradation. In this chapter, we present a comprehensive overview of four methodologies: electrophoretic mobility shift assay (EMSA), alamarBlue/CFDA-AM cell viability dyes, fluorescence microscopy, and antiviral assays, which collectively are tools to explore interactions between nucleic acids and nanoparticles, and their biological efficacy. These assays provide insights into binding potential, cytotoxicity, and antiviral efficacy of nucleic acid-based nanoparticle treatments furthering the development of effective antiviral therapeutics.

View Article and Find Full Text PDF

Double-stranded RNA is produced by viruses during their replicative cycle. It is a potent immune modulator and indicator of viral infection within the body. Extracellular vesicles (EVs) are lipid-bound particles released from cells homeostatically.

View Article and Find Full Text PDF

Disease outbreaks in crustacean aquaculture caused by opportunistic and obligate pathogens cause severe economic losses to the industry. Antibiotics are frequently used as prophylactic treatments worldwide, although its overuse and misuse has led to microbial resistance, which has driven the search for novel molecules with immunostimulant and antibacterial activities. Antimicrobial peptides (AMP) and double-stranded (ds)RNAs constitute promising immunostimulants in the fight against infectious diseases in aquaculture.

View Article and Find Full Text PDF

The common field lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), is used to treat streams and creeks infested with highly invasive and destructive sea lamprey (Petromyzon marinus) in the tributaries of the Great Lakes. Unfortunately, amphibian deaths have been reported following stream treatments with TFM. Larval amphibians (tadpoles) are more susceptible to TFM toxicity than adult amphibians.

View Article and Find Full Text PDF

American bullfrogs are thought to be carriers of ranaviruses and contribute to their global spread via trade. Bullfrog tadpoles succumb to ranaviral infection's more severe and deadly effects than bullfrog adults. Presently, little is known about bullfrog tadpoles' innate antiviral immunity, possible due to the lack of available bullfrog tadpole cell lines.

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful innate immune mechanism to knock down translation of specific proteins whose machinery is conserved from plants to mammals. The template used to determine which mRNA's translation is inhibited is dsRNA, whose origin can range from viruses (long dsRNA, ∼100-1000s bp) to host (micro(mi)RNA, ∼20mers). While miRNA-mediated RNAi is well described in vertebrates, the ability of long dsRNA to guide RNAi-mediated translation inhibition in vertebrates is controversial.

View Article and Find Full Text PDF

Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited.

View Article and Find Full Text PDF

Purpose: Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

View Article and Find Full Text PDF

In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response.

View Article and Find Full Text PDF

Background: Disorders of the intervertebral disc (IVD) are widely known to result in low back pain; one of the most common debilitating conditions worldwide. As a multifaceted condition, both inflammatory environment and mechanical factors can play a crucial role in IVD damage, and in particular, in the annulus fibrosus (AF), the highly collagenous outer ring of the IVD. As a result, a better understanding of how cells from the IVD, and specifically the AF, interact and respond to their environment is imperative.

View Article and Find Full Text PDF

Salmonids are one of the most farmed fish species worldwide. These aquatic vertebrates rely heavily on their innate immune responses as the first line of defense to defend themselves against invading pathogens. Although commercial vaccines are available against some viral and bacterial pathogens affecting salmonids, their protective efficacy varies.

View Article and Find Full Text PDF

Healthy function of intervertebral discs (IVDs) depends on their tissue mechanical properties. Native cells embedded within IVD tissues are responsible for building, maintaining, and repairing IVD structures in response to genetic, biochemical, and mechanical signals. Organ culturing provides a method for investigating how cells respond to these stimuli in their natural architectural environment.

View Article and Find Full Text PDF

Purpose: Selenium is an essential trace element that supports animal health through the antioxidant defense system by protecting cells from oxidative-related damage. Using inorganic selenium species, such as sodium selenite (Na Sel), as a food supplement is cost-effective; however, its limitation as a nutritional supplement is its cytotoxicity. One strategy to mitigate this problem is by delivering inorganic selenium using a nanoparticle delivery system (SeNP).

View Article and Find Full Text PDF

Purpose: Determine whether decorin is immuno-stimulatory to rat tail IVD cells and to characterize the mechanical consequence of inflammation at the whole rat tail IVD level.

Methods: Cultured rat tail annulus fibrosus (AF) cells were exposed to decorin, a resident IVD small leucine-rich proteoglycan (SLRP), with and without the presence of a toll-like receptor (TLR) 4 inhibitor, TAK-242. Resultant expression of pro-inflammatory cytokine and chemokines (MCP-1; MIP-2; RANTES; IL-6; TNFα) were quantified over 24 h.

View Article and Find Full Text PDF

Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW).

View Article and Find Full Text PDF

In mammals, the multifunctional DExH/D-box helicases, DDX3 and DHX9, are nucleic acid sensors with a role in antiviral immunity; their role in innate immunity in fish is not yet understood. In the present study, full-length DDX3 and DHX9 coding sequences were identified in rainbow trout (Oncorhynchus mykiss). Bioinformatic analysis demonstrated both deduced proteins were similar to those of other species, with ~80% identity to other fish species and ~70-75% identity to mammals, and both protein sequences had conserved domains found amongst all species.

View Article and Find Full Text PDF

A total of eight tadpole cell lines were established from green frogs (Lithobates clamitans) and wood frogs (Lithobates sylvatica). The five green frog cell lines were named GreenTad-HF1, GreenTad-HF2, GreenTad-HF3, GreenTad-HE4, and GreenTad-gill. The three wood frog cell lines were named WoodTad-HE1, WoodTad-Bone, and WoodTad-rpe.

View Article and Find Full Text PDF

Frog virus 3 (FV3) is the type species of the genus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes.

View Article and Find Full Text PDF

The farming of baitfish, fish used by anglers to catch predatory species, is of economic and ecological importance in North America. Baitfish, including the fathead minnow (Pimephales promelas), are susceptible to infection from aquatic viruses, such as viral hemorrhagic septicemia virus (VHSV). VHSV infections can cause mass mortality events and have the potential to be spread to novel water bodies through baitfish as a vector.

View Article and Find Full Text PDF

Viral double-stranded (ds)RNA is a potent pathogen-associated molecular pattern (PAMP), capable of inducing a strong antiviral state within the cell, protecting the cell from virus infection. In mammals and fish, sensing extracellular dsRNA is mediated by cell-surface class A scavenger receptors (SR-As). Currently, very little is known about SR-As in amphibians, including: sequence, expression patterns and function.

View Article and Find Full Text PDF

Lampricides are currently being applied to streams and rivers to control the population of sea lamprey, an invasive species, in the Great Lakes. The most commonly used lampricide agent used in the field is 3-trifluoromethyl-4-nitrophenol (TFM), which targets larval sea lamprey in lamprey-infested rivers and streams. The specificity of TFM is due to the relative inability of sea lamprey to detoxify the agent relative to non-target fishes.

View Article and Find Full Text PDF

Viruses across genome types produce long dsRNA molecules during replication [viral (v-) dsRNA]. dsRNA is a potent signaling molecule and inducer of type I interferon (IFN), leading to the production of interferon-stimulated genes (ISGs), and a protective antiviral state within the cell. Research on dsRNA-induced immune responses has relied heavily on a commercially available, and biologically irrelevant dsRNA, polyinosinic:polycytidylic acid (poly I:C).

View Article and Find Full Text PDF