Publications by authors named "Stephanie Hurley"

Bioretention cells, a type of green stormwater infrastructure, have been shown to reduce runoff volumes and remove a variety of pollutants. The ability of bioretention cells to remove nitrogen and phosphorus, however, is variable, and bioretention soil media can act as a net exporter of nutrients. This is concerning as excess loading of nitrogen and phosphorus can lead to eutrophication of surface waters, which green stormwater infrastructure is intended to ameliorate.

View Article and Find Full Text PDF

Drinking water treatment residuals (DWTRs) are a promising media amendment for enhancing phosphorus (P) removal in bioretention systems, but substantial removal of dissolved P by DWTRs has not been demonstrated in field bioretention experiments. We investigated the capacity of a non-amended control media (Control) and a DWTR-amended treatment media (DWTR) to remove soluble reactive P (SRP), dissolved organic P (DOP), particulate P (PP), and total P (TP) from stormwater in a two-year roadside bioretention experiment. Significant reductions m SRP, PP and TP concentrations and loads were observed in both the Control and DWTR media.

View Article and Find Full Text PDF

This study assessed the performance of three bioretention cells during the third and fourth years post establishment with respect to their ability to capture nitrogen (N) and phosphorus (P) in runoff from a dairy farm production area. The effects of two treatments across the three cells were evaluated: a vegetation treatment using switchgrass (Panicum virgatum L.) and a soil amendment treatment using low-P compost (derived from leaf litter).

View Article and Find Full Text PDF

Green stormwater infrastructure like bioretention can reduce stormwater runoff volumes and trap sediments and pollutants. However, bioretention soil media can be both a sink and source of phosphorus (P). We investigated the potential tradeoff between hydraulic conductivity and P sorption capacity in drinking water treatment residuals (DWTRs), with implications for bioretention media design.

View Article and Find Full Text PDF

Successful adaptation to global climate change and enhancement of agricultural watersheds' resilience requires widespread use of Nutrient Best Management Practices (NBMPs) by farms of all sizes. In the US, adoption of many NBMP practices is voluntary and insufficient to achieve local and downstream conservation objectives. Despite evidence that both social-psychological factors and socio-economic factors influence farmer decision-making, very few studies of farmers' decision-making related to NBMP adoption combine these two factor groups in a theoretically rigorous way.

View Article and Find Full Text PDF