Publications by authors named "Stephanie Hehlgans"

Purpose: Recent data suggest an impact of extracellular vesicles (EVs) and their micro(mi)RNA cargo on cell-cell interactions to contribute to pathophysiology of leukaemia and radiation response. Here, we investigated differential miRNA cargo of EVs from serum derived from patients with leukaemia (n = 11) before and after total body irradiation with 2 × 2 Gy as compared to healthy donors (n = 6).

Methods: RNA was isolated from EVs and subjected to next generation sequencing of miRNAs.

View Article and Find Full Text PDF

In glioblastoma (GB) cells oxidative stress is induced by both, conditions of the tumor microenvironment as well as by therapeutic interventions. Upregulation of superoxide dismutase 1 (SOD1), a key enzyme for oxidative defense and downstream target of mammalian target of rapamycin complex 1 (mTORC1) is a candidate mechanism to sustain survival and proliferation of tumor cells. SOD1 was inhibited by shRNA mediated gene suppression, CRISPR/Cas9 knockout and pharmacological inhibition in human (primary) GB cells.

View Article and Find Full Text PDF

Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT).

View Article and Find Full Text PDF

Glioblastoma (GBM) still presents as one of the most aggressive tumours in the brain, which despite enormous research efforts, remains incurable today. As many theories evolve around the persistent recurrence of this malignancy, the assumption of a small population of cells with a stem-like phenotype remains a key driver of its infiltrative nature. In this article, we research Chordin-like 1 (CHRDL1), a secreted protein, as a potential key regulator of the glioma stem-like cell (GSC) phenotype.

View Article and Find Full Text PDF

Introduction: After primary platinum-based chemoradiation of locally advanced uterine cervical cancer, a substantial proportion of women present with persistent, recurrent or metastatic disease, indicating an unmet need for biomarker development. Methods: We evaluated the clinical records of 69 cervical cancer patients (Federation of Gynecology and Obstetrics, FIGO Stage > IB3) who were subjected to definitive CRT. Immunohistochemical scoring of caspase-8, cyclin dependent kinase 9 (CDK9) and phosphorylated (phospho-)CDK9 (threonine (Thr) 186) was performed on pretreatment samples and correlated with the histopathological and clinical endpoints, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), cancer-specific survival (CSS) and overall survival (OS).

View Article and Find Full Text PDF

Introduction: Due to its unique functional impact on multiple cancer cell circuits including proliferation, apoptosis, tumor dissemination, DNA damage repair, and immune response, the inhibitor of apoptosis protein (IAP) survivin has gained high interest as a molecular target and a multitude of therapeutics were developed to interfere with survivin expression and functionality. First clinical evaluations of these therapeutics, however, were disappointing highlighting the need to develop advanced delivery systems of survivin-targeting therapeutics.

Areas Covered: This review focuses on advancements in nanocarriers to molecularly target survivin in human malignancies.

View Article and Find Full Text PDF

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration.

View Article and Find Full Text PDF

Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system.

View Article and Find Full Text PDF

Anti-inflammatory effects of low-dose irradiation often follow a non-linear dose-effect relationship. These characteristics were also described for the modulation of leukocyte adhesion to endothelial cells. Previous results further revealed a contribution of reactive oxygen species (ROS) and anti-oxidative factors to a reduced leukocyte adhesion.

View Article and Find Full Text PDF

Purpose: Dexamethasone (Dex) is the most common corticosteroid to treat edema in glioblastoma (GBM) patients. Recent studies identified the addition of Dex to radiation therapy (RT) to be associated with poor survival. Independently, Tumor Treating Fields (TTFields) provides a novel anti-cancer modality for patients with primary and recurrent GBM.

View Article and Find Full Text PDF

Despite recent advances in the treatment of colorectal cancer (CRC), patient's individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells.

View Article and Find Full Text PDF

Substantial evidence has shown that overexpression of the inhibitor of apoptosis protein (IAP) survivin in human tumors correlates significantly with treatment resistance and poor patient prognosis. Survivin serves as a radiation resistance factor that impacts the DNA damage response by interacting with DNA-dependent protein kinase (DNA-PKcs). However, the complexity, molecular determinants, and functional consequences of this interrelationship remain largely unknown.

View Article and Find Full Text PDF

Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection.

View Article and Find Full Text PDF

NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Survivin is a drug target, and the drug candidate YM155 has shown promise for treating high-risk neuroblastoma, but some cancer cells can develop resistance to it.
  • In a study of YM155-adapted UKF-NB-3 sublines, researchers found that increased ABCB1 levels and decreased SLC35F2 levels were linked to YM155 resistance, but these indicators did not predict sensitivity to YM155 in untreated cells.
  • The resistant sublines displayed high heterogeneity and varied responses to other anti-cancer drugs, suggesting that cancer treatment needs to be personalized and that monitoring cell evolution and resistance indicators is essential.
View Article and Find Full Text PDF

Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide--glycolide) and polyethylene glycol-poly(d,l-lactide--glycolide) copolymers were compared.

View Article and Find Full Text PDF

Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca-permeable NMDARs in three glioblastoma cell lines.

View Article and Find Full Text PDF

Glioblastoma is one of the deadliest malignancies and is virtually incurable. Accumulating evidence indicates that a small population of cells with a stem-like phenotype is the major culprit of tumor recurrence. Enhanced DNA repair capacity and expression of stemness marker genes are the main characteristics of these cells.

View Article and Find Full Text PDF

Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line.

View Article and Find Full Text PDF

Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy.

View Article and Find Full Text PDF

Driven by genetic and epigenetic alterations, progression, therapy resistance and metastasis are frequent events in colorectal cancer (CRC). Although often speculated, the function of cell-cell contact for radiochemosensitivity, particularly associated with E-cadherin/catenin complex, warrants further clarification. In this study, we investigated the role of the E-cadherin/catenin complex proteins under more physiological three-dimensional (3D) cell culture conditions in a panel of CRC cell lines.

View Article and Find Full Text PDF

The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes.

View Article and Find Full Text PDF

For decades, low- and moderate-dose radiation therapy (RT) has been shown to exert a beneficial therapeutic effect in a multitude of non-malignant conditions including painful degenerative muscoloskeletal and hyperproliferative disorders. Dupuytren and Ledderhose diseases are benign fibroproliferative diseases of the hand/foot with fibrotic nodules and fascial cords, which determine debilitating contractures and deformities of fingers/toes, while keloids are exuberant scar formations following burn damage, surgery, and trauma. Although RT has become an established and effective option in the management of these diseases, experimental studies to illustrate cellular composites and factors involved remain to be elucidated.

View Article and Find Full Text PDF

Increased abundance of the mRNA-binding protein human antigen R (HuR) is a characteristic feature of many cancers and frequently associated with a high grade malignancy and therapy resistance. HuR elicits a broad cell survival program mainly by stabilizing or increasing the translation of mRNAs coding for anti-apoptotic effector proteins. Conversally, we previously identified the pro-apoptotic caspase-2 as a novel HuR target which is mainly regulated at the level of translation.

View Article and Find Full Text PDF

Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101.

View Article and Find Full Text PDF