Publications by authors named "Stephanie Hatch"

Background: Alpha-1 antitrypsin deficiency (A1ATD) is a life-threatening condition caused by the inheritance of the serpin family A member 1 "Z" genetic variant driving alpha-1 antitrypsin (AAT) protein misfolding in hepatocytes. There are no approved medicines for this disease.

Methods: We conducted a high-throughput image-based small molecule screen using patient-derived induced pluripotent stem cell-hepatocytes (iPSC-hepatocytes).

View Article and Find Full Text PDF

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period).

View Article and Find Full Text PDF

The colony formation assay is the gold-standard technique to assess cell viability after treatment with cytotoxic reagents, ionizing radiation, and cytotoxic combinatorial treatments. This protocol describes a high-throughput automated and high-content imaging approach to screen siRNA molecular libraries in HeLa cervical cancer cells in 96-well format. We detail reverse transfection of cells with siRNAs, followed by ionizing radiation, fixing, and staining of the plates for automated colony counting.

View Article and Find Full Text PDF

We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit.

View Article and Find Full Text PDF

Background: In clear cell renal cell carcinoma, 80% of cases have biallelic inactivation of the VHL gene, leading to constitutive activation of both HIF1α and HIF2α. As HIF2α is the driver of the disease promoting tumour growth and metastasis, drugs targeting HIF2α have been developed. However, resistance is common, therefore new therapies are needed.

View Article and Find Full Text PDF

Background: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity.

Methods: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role.

View Article and Find Full Text PDF

Objectives: We investigated determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines.

Methods: HCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks post-vaccination if receiving a 12-week dosing interval. Quantitative post-vaccination anti-spike antibody responses were measured using the Abbott SARS-CoV-2 IgG II Quant assay (detection threshold: ≥50 AU/mL).

View Article and Find Full Text PDF

Background: Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. In this setting the sensitivity and specificity of the best performing assays can both exceed 98%. However, antibody assay performance following mild infection is less clear.

View Article and Find Full Text PDF

Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint.

View Article and Find Full Text PDF

We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an open science resource for studying kinase biology. The set only includes inhibitors that show potent kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase biochemical assays. Currently, the set contains 187 inhibitors that cover 215 human kinases.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary.

Methods: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs).

View Article and Find Full Text PDF

Background: The relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection remains unclear.

Methods: We investigated the incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative health care workers attending testing of asymptomatic and symptomatic staff at Oxford University Hospitals in the United Kingdom. Baseline antibody status was determined by anti-spike (primary analysis) and anti-nucleocapsid IgG assays, and staff members were followed for up to 31 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted in the Oxford area from April 14 to June 15, 2020, tested 1,000 antenatal serum samples for SARS-CoV-2 IgG, revealing a 5.3% seroprevalence consistent with regional data.
  • Out of the 53 positive samples, 39 exhibited in vitro neutralisation activity, which strongly correlated with IgG levels (p<0.0001).
  • The findings suggest that monitoring SARS-CoV-2 seroprevalence in pregnant populations might be useful for public health, but further research is needed to explore clinical implications and changes over time.
View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is an aggressive cancer, associated with poor prognosis. We assessed the feasibility of patient-derived cell cultures to serve as an ex vivo model of MPM. Patient-derived MPM cell cultures (n=16) exhibited stemness features and reflected intratumour and interpatient heterogeneity.

View Article and Find Full Text PDF

We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time.

View Article and Find Full Text PDF

Cyclins are central engines of cell cycle progression in conjunction with cyclin-dependent kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but instead forms via its F-box domain an SCF (Skp1-Cul1-F-box)-type E3 ubiquitin ligase module. Although various substrates of cyclin F have been identified, the vulnerabilities of cells lacking cyclin F are not known.

View Article and Find Full Text PDF

Use of hepatocytes derived from induced pluripotent stem cells (i-Heps) is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA) of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI) for comparing the hepatic properties of cells against a physiological gold standard.

View Article and Find Full Text PDF

Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A. A modular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure-activity relationships, leading to the development of a small molecule with around 75-fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations.

View Article and Find Full Text PDF

The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site.

View Article and Find Full Text PDF

Background: Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors.

View Article and Find Full Text PDF

Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes.

View Article and Find Full Text PDF

We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.

View Article and Find Full Text PDF

As the options for systemic treatment of malignant melanoma (MM) increase, the need to develop biomarkers to identify patients who might benefit from cytotoxic chemotherapy becomes more apparent. In preclinical models, oxaliplatin has activity in cisplatin-resistant cells. In this study, we have shown that oxaliplatin forms interstrand crosslinks (ICLs) in cellular DNA and that loss of the heterodimeric structure-specific endonuclease XPF-ERCC1 causes hypersensitivity to oxaliplatin in mammalian cells.

View Article and Find Full Text PDF

DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy.

View Article and Find Full Text PDF

Purpose: Microsatellite instability (MSI) is found in 10% to 15% of sporadic colorectal tumors and is usually caused by defects in DNA mismatch repair (MMR). In 1997, a panel of microsatellite markers including mononucleotide and dinucleotide repeats was recommended by a National Cancer Institute workshop on MSI. We investigated the relationship between instability of these markers and MMR protein expression in a cohort of sporadic colorectal cancer patients.

View Article and Find Full Text PDF