This method utilizes a template for an open pedagogy lesson plan using US government documents that can be applied to academic levels ranging from elementary to post-secondary. This method addresses concerns about OER quality, exposes students to the wealth of information in U.S.
View Article and Find Full Text PDFClinical utility describes the benefits of each laboratory test for that patient. Many stakeholders have adopted narrow definitions for the clinical utility of molecular testing as applied to targeted pharmacotherapy in oncology, regardless of the population tested or the purpose of the testing. This definition does not address all of the important applications of molecular diagnostic testing.
View Article and Find Full Text PDFCarrier screening for certain diseases is recommended by major medical and Ashkenazi Jewish (AJ) societies. Most carrier screening panels test only for common, ethnic-specific variants. However, with formerly isolated ethnic groups becoming increasingly intermixed, this approach is becoming inadequate.
View Article and Find Full Text PDFLoss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined.
View Article and Find Full Text PDFTay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.
View Article and Find Full Text PDFPurpose: Carrier screening for recessive Mendelian disorders traditionally employs focused genotyping to interrogate limited sets of mutations most prevalent in specific ethnic groups. We sought to develop a next-generation DNA sequencing-based workflow to enable analysis of a more comprehensive set of disease-causing mutations.
Methods: We utilized molecular inversion probes to capture the protein-coding regions of 15 genes from genomic DNA isolated from whole blood and sequenced those regions using the Illumina HiSeq 2000 (Illumina, San Diego, CA).
Objective: To document fragile X allele frequencies in a national referral population and evaluate CGG repeat expansion in mother-offspring transmissions.
Methods: Fragile X DNA analysis by Southern blot and polymerase chain reaction was completed for 14,675 women, aged 18 years or older, and 238 mother-offspring pairs between January 1999 and June 2004. Carrier frequencies were compared between groups referred for different clinical indications.
Purpose: To document our experience with fragile X carrier screening.
Methods: In this study, 29,103 women with no known or suspected family history of fragile X syndrome were offered fragile X carrier screening during their prenatal genetic counseling visit. Screening acceptance was analyzed by referral indication, carrier frequencies documented, and prenatal outcome data presented.