Background: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs.
View Article and Find Full Text PDFAtherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood.
View Article and Find Full Text PDFArterial remodeling in hypertension and intimal hyperplasia involves inflammation and disrupted flow, both of which contribute to smooth muscle cell dedifferentiation and proliferation. In this context, our previous results identified phosphoinositide 3-kinase γ (PI3Kγ) as an essential factor in inflammatory processes of the arterial wall. Here, we identify for the first time a kinase-independent role of nonhematopoietic PI3Kγ in the vascular wall during intimal hyperplasia using PI3Kγ-deleted mice and mice expressing a kinase-dead version of the enzyme.
View Article and Find Full Text PDFCells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation.
View Article and Find Full Text PDFInflammation is a well-known pathophysiological factor of atherosclerosis but its therapeutic targeting has long been ignored. However, recent advances in the understanding of the immune mechanisms implicated in atherosclerosis have unveiled several therapeutic targets currently undergoing clinical trials. These studies have also shed light on a dialogue between the immune compartment and vascular smooth muscle cells (VSMCs) that plays a critical role in atherosclerotic disease initiation, progression, and stabilization.
View Article and Find Full Text PDFAtherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression.
View Article and Find Full Text PDFAims: Defects in efficient endothelial healing have been associated with complication of atherosclerosis such as post-angioplasty neoatherosclerosis and plaque erosion leading to thrombus formation. However, current preventive strategies do not consider re-endothelialization in their design. Here, we investigate mechanisms linking immune processes and defect in re-endothelialization.
View Article and Find Full Text PDFCollective cell migration is a critical mechanism involved in cell movement during various physiological and pathological processes such as angiogenesis and metastasis formation. During collective movement, cells remain functionally connected and can coordinate individual cell behaviors to ensure efficient migration. A cell-cell communication process ensures this complex coordination.
View Article and Find Full Text PDFBackground/aims: High-density lipoproteins (HDL) exert multiple cardioprotective functions on the arterial wall, including the promotion of endothelial cell survival and proliferation. Among mechanism contributing to endothelial protection, it has been reported that apolipoprotein A-I (apoA-I), the major protein in HDL, binds and activates the endothelial ecto-F1-ATPase receptor. This generates extracellular ADP, which in turn promotes endothelial cell survival.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the leading cause of death worldwide and represent a major problem of public health. Over the years, life expectancy has considerably increased throughout the world, and the prevalence of CVD is inevitably rising with the growing ageing of the population. The normal process of ageing is associated with progressive deterioration in structure and function of the vasculature, commonly called vascular ageing.
View Article and Find Full Text PDFCardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses.
View Article and Find Full Text PDFInterventional strategies to treat atherosclerosis, such as transluminal angioplasty and stent implantation, often cause vascular injury. This leads to intimal hyperplasia (IH) formation that induces inflammatory and fibroproliferative processes and ultimately restenosis. We show that phosphoinositide 3-kinase γ (PI3Kγ) is a key player in IH formation and is a valid therapeutic target in its prevention/treatment.
View Article and Find Full Text PDFRasa3 is a GTPase activating protein of the GAP1 family which targets Ras and Rap1. Ubiquitous Rasa3 catalytic inactivation in mouse results in early embryonic lethality. Here, we show that Rasa3 catalytic inactivation in mouse hematopoietic cells results in a lethal syndrome characterized by severe defects during megakaryopoiesis, thrombocytopenia and a predisposition to develop preleukemia.
View Article and Find Full Text PDFAims: Elastin is degraded during vascular ageing and its products, elastin-derived peptides (EP), are present in the human blood circulation. EP binds to the elastin receptor complex (ERC) at the cell surface, composed of elastin-binding protein (EBP), a cathepsin A and a neuraminidase 1. Some in vitro functions have clearly been attributed to this binding, but the in vivo implications for arterial diseases have never been clearly investigated.
View Article and Find Full Text PDFThe protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R.
View Article and Find Full Text PDFAtherosclerosis is a progressive multifaceted inflammatory disease affecting large- and medium-sized arteries. Typical feature of this disease is the formation and build-up of atherosclerotic plaques characterized by vascular extracellular matrix degradation and remodeling. Many studies have documented degradation of native elastin, the main extracellular matrix protein responsible for resilience and elasticity of arteries, by local release of elastases, leading to the production of elastin-derived peptides (EDP).
View Article and Find Full Text PDFKinesins, including the kinesin 2/KIF3 molecular motor, play an important role in intracellular traffic and can deliver vesicles to distal axon terminals, to cilia, to nonpolarized cell surfaces or to epithelial cell basolateral membranes, thus taking part in the establishment of cellular polarity. We report here the consequences of kinesin 2 motor inactivation in the thyroid of 3-week-old Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice. Our results indicate first that 3-week-old Pax8(Cre/)(+) mice used in these experiments present minor thyroid functional defects resulting in a slight increase in circulating bioactive TSH and intracellular cAMP levels, sufficient to maintain blood thyroxine levels in the normal range.
View Article and Find Full Text PDFInositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin.
View Article and Find Full Text PDFPhosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2.
View Article and Find Full Text PDFThe primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium.
View Article and Find Full Text PDFInflammation has a central role in the pathogenesis of atherosclerosis at various stages of the disease. Therefore it appears of great interest to develop novel and innovative drugs targeting inflammatory proteins for the treatment of atherosclerosis. The PI3K (phosphoinositide 3-kinase) family, which catalyses the phosphorylation of the 3-OH position of phosphoinositides and generates phospholipids, controls a wide variety of intracellular signalling pathways.
View Article and Find Full Text PDFBackground: The role of inflammation at all stages of the atherosclerotic process has become an active area of investigation, and there is a notable quest for novel and innovative drugs for the treatment of atherosclerosis. The lipid kinase phosphoinositide 3-kinase-gamma (PI3Kgamma) is thought to be a key player in various inflammatory, autoimmune, and allergic processes. These properties and the expression of PI3Kgamma in the cardiovascular system suggest that PI3Kgamma plays a role in atherosclerosis.
View Article and Find Full Text PDFRecent studies highlight the existence of an autonomous nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PCs as a source of second messengers and, particularly, nuclear phospholipase D (PLD) identification in membrane-free nuclei isolated from pig aorta vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDF