Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer.
View Article and Find Full Text PDFTwo narrow bandgap conjugated polymers containing chiral 2-ethylhexyl side chains were synthesized: poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-:3,4-']dithiophene)-2,6-diyl--(2,1,3-benzothiadiazole)-4,7-diyl] (PCPDTBT*) and poly[(4,4-bis(2-ethylhexyl)cyclopenta[2,1-:3,4-0]dithiophene)-2,6-diyl--[1,2,5]-thiadiazolo[3,4-]pyridine] (PCDTPT*). The presence of a chiral substituent provides a handle to study the geometry of interchain aggregates and/or the secondary structure of these conjugated polymers in solution and in thin films circular dichroism (CD) spectroscopy, provided that the asymmetry in the side-chain is translated to the optically active conjugated backbone. CD signals are observed for PCPDTBT* and PCDTPT* in poor solvent systems, which indicate the presence of chiral ordering in the aggregates.
View Article and Find Full Text PDFA scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers.
View Article and Find Full Text PDFWe report the synthesis of a series of water-soluble anionic narrow band-gap conjugated polyelectrolytes with a varied density of the ionic functional groups. The charge density is modulated by incorporating the structural units with tetraethylene glycol (TEG) monomethyl ether side chains. These polymers are readily p-doped during dialysis in water.
View Article and Find Full Text PDFThis contribution reports a series of anionic narrow-band-gap self-doped conjugated polyelectrolytes (CPEs) with π-conjugated cyclopenta-[2,1-b;3,4-b']-dithiophene-alt-4,7-(2,1,3-benzothiadiazole) backbones, but with different counterions (Na(+), K(+), vs tetrabutylammonium) and lengths of alkyl chains (C4 vs C3). These materials were doped to provide air-stable, water-soluble conductive materials. Solid-state electrical conductivity, thermopower, and thermal conductivity were measured and compared.
View Article and Find Full Text PDF