Publications by authors named "Stephanie French"

A 4-y-old, spayed female, mixed-breed domesticated rabbit () was presented because of progressive bilateral exophthalmos, with a large mediastinal mass in the cranial thorax. Palliative radiation therapy was elected, and 4 fractions of 5 Gy were delivered twice weekly under general anesthesia using 3-dimensional conformal radiation therapy for a total dose of 20 Gy, guided by an on-board cone beam CT scan. Quality-of-life and respiratory rate improved before sudden death that followed an episode of dyspnea.

View Article and Find Full Text PDF

Published reports of neoplasms in Thomson's gazelles ( Eudorcas thomsonii) are very rare, but thyroid tumors were the most common neoplasm of this species, accounting for 12% of reported pathologies in a 1998-2012 retrospective study of cases submitted for histologic review of grossly enlarged thyroid glands. This report describes the histological and immunohistochemical characteristics of thyroid neoplasms in 10 Thomson's gazelles from five different zoological collections. Neoplasms were submitted as biopsies from six gazelles or collected during necropsy from four gazelles.

View Article and Find Full Text PDF

The left ventricular working, crystalloid-perfused heart is used extensively to evaluate basic cardiac function, pathophysiology, and pharmacology. Crystalloid-perfused hearts may be limited by oxygen delivery, as adding oxygen carriers increases myoglobin oxygenation and improves myocardial function. However, whether decreased myoglobin oxygen saturation impacts oxidative phosphorylation (OxPhos) is unresolved, since myoglobin has a much lower affinity for oxygen than cytochrome c oxidase (COX).

View Article and Find Full Text PDF

The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Adverse drug reactions affecting the gastrointestinal (GI) tract are a serious burden on patients, healthcare providers and the pharmaceutical industry. GI toxicity encompasses a range of pathologies in different parts of the GI tract. However, to date no specific mechanistic diagnostic/prognostic biomarkers or translatable pre-clinical models of GI toxicity exist.

View Article and Find Full Text PDF

Purpose: Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration.

View Article and Find Full Text PDF

Various human diseases are associated with mitochondrial DNA (mtDNA) mutations, but heteroplasmy—the coexistence of mutant and wild-type mtDNA—complicates their study. We previously isolated a temperature-lethal mtDNA mutation in Drosophila, mt:CoI(T300I), which affects the cytochrome c oxidase subunit I (CoI) locus. In the present study, we found that the decrease in cytochrome c oxidase (COX) activity was ascribable to a temperature-dependent destabilization of cytochrome a heme.

View Article and Find Full Text PDF

Objective: To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice.

Methods: 3D volumes of in vivo murine TA muscles were imaged by MPM. Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed.

View Article and Find Full Text PDF

Cardiac oxidative ATP generation is finely tuned to match several-fold increases in energy demand. Calcium has been proposed to play a role in the activation of ATP production via PKA phosphorylation in response to intramitochondrial cAMP generation. We evaluated the effect of cAMP, its membrane permeable analogs (dibutyryl-cAMP, 8-bromo-cAMP), and the PKA inhibitor H89 on respiration of isolated pig heart mitochondria.

View Article and Find Full Text PDF

Infections caused by Penicillium species are rare in dogs, and the prognosis in these cases is poor. An unknown species of Penicillium was isolated from a bone lesion in a young dog with osteomyelitis of the right ilium. Extensive diagnostic evaluation did not reveal evidence of dissemination.

View Article and Find Full Text PDF

An adult female, wild-caught red coachwhip snake (Masticophis flagellum piceus) was euthanized at the Phoenix Zoo due to severe neurologic signs. Necropsy and histopathology revealed an invasive liposarcoma of the vertebral column, which likely caused the neurologic signs. Histology of the small intestine revealed a granuloma with intralesional yeasts morphologically compatible with the genus Coccidioides.

View Article and Find Full Text PDF

Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation complexes (MOPCs) is modulated at multiple sites. Here, a method of optically monitoring electron distribution within and between MOPCs is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (∼465-630 nm) were modeled using linear least squares analysis with individual chromophore spectra.

View Article and Find Full Text PDF

With the use of iTRAQ labeling and mass spectrometry on an LTQ-Orbitrap with HCD capability, we assessed relative changes in protein phosphorylation in the mitochondria upon physiological perturbation. As a reference reaction, we monitored the well-characterized regulation of pyruvate dehydrogenase (PDH) activity via phosphorylation/dephosphorylation by pyruvate dehydrogenase kinase/pyruvate dehydrogenase phosphatase in response to dichloroacetate, de-energization and Ca2+. Relative quantification of phosphopeptides of PDH-E1alpha subunit from porcine heart revealed dephosphorylation at three serine sites (Ser231, Ser292 and Ser299).

View Article and Find Full Text PDF

Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism, and heme synthesis. Inorganic phosphate (P(i)) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study, it was shown that P(i) binds the porcine heart SCS alpha-subunit (SCSalpha) in a noncovalent manner and enhances its enzymatic activity, thereby providing a new target for P(i) activation in mitochondria.

View Article and Find Full Text PDF

Protein phosphorylations, as well as phosphate metabolite binding, are well characterized post-translational mechanisms that regulate enzyme activity in the cytosol, but remain poorly defined in mitochondria. Recently extensive matrix protein phosphorylation sites have been discovered but their functional significance is unclear. Herein we describe methods of using (32)P labeling of intact mitochondria to determine the dynamic pools of protein phosphorylation as well as phosphate metabolite association.

View Article and Find Full Text PDF

Protein phosphorylation is a well-characterized regulatory mechanism in the cytosol, but remains poorly defined in the mitochondrion. In this study, we characterized the use of (32)P-labeling to monitor the turnover of protein phosphorylation in the heart and liver mitochondria matrix. The (32)P labeling technique was compared and contrasted to Phos-tag protein phosphorylation fluorescent stain and 2D isoelectric focusing.

View Article and Find Full Text PDF

These studies were structured with the aim of utilizing emerging technologies in two-dimensional (2D) gel electrophoresis and mass spectrometry to evaluate protein expression changes associated with type 1 diabetes. We reasoned that a broad examination of diabetic tissues at the protein level might open up novel avenues of investigation of the metabolic and signaling pathways that are adversely affected in type 1 diabetes. This study compared the protein expression of the liver, heart, and skeletal muscle of diabetes-prone rats and matched control rats by semiquantitative liquid chromatography-mass spectrometry and differential in-gel 2D gel electrophoresis.

View Article and Find Full Text PDF

The functionality of the mitochondrion is primarily determined by nuclear encoded proteins. The mitochondrial functional requirements of different tissues vary from a significant biosynthetic role (liver) to a primarily energy metabolism-oriented organelle (heart). The purpose of this study was to compare the mitochondrial proteome from four different tissues of the rat, brain, liver, heart, and kidney, to provide insight into the extent of mitochondrial heterogeneity and to further characterize the overall mitochondrial proteome.

View Article and Find Full Text PDF

Post-translational modification of mitochondrial proteins by phosphorylation or dephosphorylation plays an essential role in numerous cell signaling pathways involved in regulating energy metabolism and in mitochondrion-induced apoptosis. Here we present a phosphoproteomic screen of the mitochondrial matrix proteins and begin to establish the protein phosphorylations acutely associated with calcium ions (Ca(2+)) signaling in porcine heart mitochondria. Forty-five phosphorylated proteins were detected by gel electrophoresis-mass spectrometry of Pro-Q Diamond staining, while many more Pro-Q Diamond-stained proteins evaded mass spectrometry detection.

View Article and Find Full Text PDF

Previous studies have determined that mice with a homozygous deletion in the adapter protein p66(shc) have an extended life span and that cells derived from these mice exhibit lower levels of reactive oxygen species. Here we demonstrate that a fraction of p66(shc) localizes to the mitochondria and that p66(shc-/-) fibroblasts have altered mitochondrial energetics. In particular, despite similar cytochrome content, under basal conditions, the oxygen consumption of spontaneously immortalized p66(shc-/-) mouse embryonic fibroblasts were lower than similarly maintained wild type cells.

View Article and Find Full Text PDF

Phosphate (Pi) is a putative cytosolic signaling molecule in the regulation of oxidative phosphorylation. Here, by using a multiparameter monitoring system, we show that Pi controls oxidative phosphorylation in a balanced fashion, modulating both the generation of useful potential energy and the formation of ATP by F1F0-ATPase in heart and skeletal muscle mitochondria. In these studies the effect of Pi was determined on the mitochondria [NADH], NADH generating capacity, matrix pH, membrane potential, oxygen consumption, and cytochrome reduction level.

View Article and Find Full Text PDF

The role of Ca(2+) as a cytosolic signaling molecule between porcine cardiac sarcoplasmic reticulum (SR) ATPase and mitochondrial ATP production was evaluated in vitro. The Ca(2+) sensitivity of these processes was determined individually and in a reconstituted system with SR and mitochondria in a 0.5:1 protein-to-cytochrome aa(3) ratio.

View Article and Find Full Text PDF