Publications by authors named "Stephanie Fingerson"

The use of haploidentical related donor (HRD) hematopoietic cell transplants (HCTs) in the United States grew by more than fourfold in the last decade, driven mainly by use of posttransplant cyclophosphamide (PTCy)-based graft-versus-host-disease prophylaxis. However, not all patients have a suitable HRD available. In this study, we explored the existence of unrelated donors (URDs) on the National Marrow Donor Program (NMDP) registry at the 8/8- or 7/8-match level for patients receiving HRD HCT in the United States and reporting to the Center for International Blood and Marrow Transplant Research between 2013 and 2020.

View Article and Find Full Text PDF

Purpose: Immunopeptidome divergence between mismatched HLA-DP is a determinant of T-cell alloreactivity and clinical tolerability after fully HLA-A, -B, -C, -DRB1, -DQB1 matched unrelated donor hematopoietic cell transplantation (UD-HCT). Here, we tested this concept in HLA-A, -B, and -C disparities after single class I HLA-mismatched UD-HCT.

Patients And Methods: We studied 2,391 single class I HLA-mismatched and 14,426 fully HLA-matched UD-HCT performed between 2008 and 2018 for acute leukemia or myelodysplastic syndromes.

View Article and Find Full Text PDF

Hematopoietic cell transplantation from HLA-haploidentical related donors is increasingly used to treat hematologic cancers; however, characteristics of the optimal haploidentical donor have not been established. We studied the role of donor HLA mismatching in graft-versus-host disease (GVHD), disease recurrence, and survival after haploidentical donor transplantation with posttransplantation cyclophosphamide (PTCy) for 1434 acute leukemia or myelodysplastic syndrome patients reported to the Center for International Blood and Marrow Transplant Research. The impact of mismatching in the graft-versus-host vector for HLA-A, -B, -C, -DRB1, and -DQB1 alleles, the HLA-B leader, and HLA-DPB1 T-cell epitope (TCE) were studied using multivariable regression methods.

View Article and Find Full Text PDF

Despite its demonstrated importance in hematopoietic cell transplantation, the HLA-DPB1 locus is only typed in one in five unrelated donors in the United States. Addressing this issue, we developed a DPB1 Prediction Service that leverages seven-locus haplotype frequencies (HLA-A ∼ C ∼ B ∼ DRB3/4/5 ∼ DRB1 ∼ DQB1 ∼ DPB1) to extend the imputation of six-locus HLA typing (HLA-A ∼ C ∼ B ∼ DRB3/4/5 ∼ DRB1 ∼ DQB1) to the HLA-DPB1 locus, including the novel prediction of HLA-DPB1 TCE groups to calculate donor-recipient TCE permissive match probabilities. Simulations of current-day patient searches reveal the service can fill in missing gaps for another four in five donors that appears on lists.

View Article and Find Full Text PDF

To optimize strategies that mitigate the risk of graft loss associated with HLA incompatibility, we evaluated whether sequence defined HLA targets (eplets) that result in donor-specific antibodies are associated with transplant outcomes. To define this, we fit multivariable Cox proportional hazard models in a cohort of 118 382 United States first kidney transplant recipients to assess risk of death-censored graft failure by increments of ten antibody-verified eplet mismatches. To verify robustness of our findings, we conducted sensitivity analysis in this United States cohort and assessed the role of antibody-verified eplet mismatches as autonomous predictors of transplant glomerulopathy in an independent Canadian cohort.

View Article and Find Full Text PDF

The major histocompatibility complex (MHC) contains the most polymorphic genetic system in humans, the human leukocyte antigen (HLA) genes of the adaptive immune system. High allelic diversity in HLA is argued to be maintained by balancing selection, such as negative frequency-dependent selection or heterozygote advantage. Selective pressure against immune escape by pathogens can maintain appreciable frequencies of many different HLA alleles.

View Article and Find Full Text PDF

The search for a suitable human leukocyte antigen (HLA)-matched unrelated adult stem cell donor (URD) or umbilical cord blood unit (UCB) is a complex process. The National Marrow Donor Program (NMDP) developed a search algorithm known as HapLogic, which is currently provided within the NMDP Traxis application. The HapLogic algorithm has been in use since 2006 and has advanced URD/UCB HLA-matching technology.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) displays remarkable ethnic predisposition for whites, with relative sparing of African-American and Asian populations. In addition, CLL displays among the highest familial predispositions of all hematologic malignancies, yet the genetic basis for these differences is not clearly defined. The highly polymorphic HLA genes of the major histocompatibility complex play a central role in immune surveillance and confer risk for autoimmune and infectious diseases and several different cancers, the role for which in the development of CLL has not been extensively investigated.

View Article and Find Full Text PDF