CK1δ is a serine-threonine kinase involved in several pathological conditions including neuroinflammation and neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Specifically, it seems that an inhibition of CK1δ could have a neuroprotective effect in these conditions. Here, a series of [1,2,4]triazolo[1,5-a][1,3,5]triazines were developed as ATP-competitive CK1δ inhibitors.
View Article and Find Full Text PDFProtein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis.
View Article and Find Full Text PDFRare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT).
View Article and Find Full Text PDFAdenosine receptors are largely distributed in our organism and are promising therapeutic targets for the treatment of many pathologies. In this perspective, investigating the structural features of the ligands leading to affinity and/or selectivity is of great interest. In this work, we have focused on a small series of pyrazolo-triazolo-pyrimidine antagonists substituted in positions 2, 5, and N8, where bulky acyl moieties at the N5 position and small alkyl groups at the N8 position are associated with affinity and selectivity at the A adenosine receptor even if a good affinity toward the A adenosine receptor has also been observed.
View Article and Find Full Text PDFThe A adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a K value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes.
View Article and Find Full Text PDFBased on a screening of a chemical library of A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the AAR. The -methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (, IC = 0.
View Article and Find Full Text PDFTraditionally, molecular recognition between the orthosteric site of adenosine receptors and their endogenous ligand occurs with a 1 : 1 stoichiometry. Inspired by previous mechanistic insights derived from supervised molecular dynamics (SuMD) simulations, which suggested an alternative 2 : 1 binding stoichiometry, we synthesized BRA1, a bis-ribosyl adenosine derivative, tested its ability to bind to and activate members of the adenosine receptor family, and rationalized its activity through molecular modeling.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression.
View Article and Find Full Text PDFBackground: GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and the autoimmune disease multiple sclerosis.
Objective: This review aims to help researchers both working on this research topic or not to have a comprehensive overview of GSK-3β in the context of neuroinflammation and neurodegeneration.
Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated approach in the drug discovery process, leading to several drug candidates under investigation in clinical trials and some approved drugs. Among these successful applications of the FBDD approach, kinases represent a class of targets where this strategy has demonstrated its real potential with the approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in the treatment of different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
View Article and Find Full Text PDFA adenosine receptors were found to have a role in different pathological states, such as glaucoma, renal fibrosis, neuropathic pain and cancer. Consequently, it is important to utilize any molecular tool which could help to study these conditions. In the present study we continue our search for potent A adenosine receptor ligands which could be successively conjugated to other molecules with the aim of obtaining more potent ( allosteric ligand conjugation) or detectable ligands ( fluorescent molecule or biotin conjugation).
View Article and Find Full Text PDFProtein kinase CK1δ expression and activity is involved in different pathological situations that include neuroinflammatory and neurodegenerative diseases. For this reason, protein kinase CK1δ has become a possible therapeutic target for these conditions. 5,6-fused bicyclic heteroaromatic systems that resemble adenine of ATP represent optimal scaffolds for the development of a new class of ATP competitive CK1δ inhibitors.
View Article and Find Full Text PDFThe A adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy.
View Article and Find Full Text PDFRecent studies have highlighted the key role of Casein kinase 1 δ (CK1δ) in the development of several neurodegenerative pathologies, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). So far, CK1δ inhibitors are noncovalent ATP competitive ligands and no drugs are currently available for this molecular target, hence the interest in developing new CK1δ inhibitors. The study aims to identify new inhibitors able to bind the enzyme; by a dual approach in silico/in vitro, the virtual screening has been performed on an in-house chemical library, which was previously designed and synthesized for other targets.
View Article and Find Full Text PDFCompounds able to simultaneously bind a biological target and be conjugated to a second specific moiety are attractive tools for the development of multi-purpose ligands useful as multi-target ligands, receptor probes or drug delivery systems, with both therapeutic and diagnostic applications. The human A adenosine receptor is a G protein-coupled receptor involved in many physio-pathological conditions, e.g.
View Article and Find Full Text PDFResearch on the adenosine receptors has been supported by the continuous discovery of new chemical probes characterized by more and more affinity and selectivity for the single adenosine receptor subtypes (A, A, A and A adenosine receptors). Furthermore, the development of new techniques for the detection of G protein-coupled receptors (GPCR) requires new specific probes. In fact, if in the past radioligands were the most important GPCR probes for detection, compound screening and diagnostic purposes, nowadays, increasing importance is given to fluorescent and covalent ligands.
View Article and Find Full Text PDFHuman A adenosine receptor hAAR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A adenosine receptor (hAAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, (a non-selective adenosine receptors' ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold.
View Article and Find Full Text PDFA series of adenosine receptor antagonists bearing a reactive linker was developed. Functionalization of these derivatives is useful to easily obtain multi-target ligands, receptor probes, drug delivery systems, and diagnostic or theranostic systems. The pyrazolo[4,3-][1,2,4]triazolo[1,5-]pyrimidine scaffold was chosen as a pharmacophore for the adenosine receptors.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression.
View Article and Find Full Text PDFBackground: Platelet aggregation plays a pathogenic role in the development of arterial thrombi, which are responsible for common diseases caused by thrombotic arterial occlusion, such as myocardial infarction and stroke. Much efforts are directed toward developing platelet aggregation inhibitors that act through several mechanisms: The main antiplatelet family of COXinhibitors, phosphodiesterase inhibitors, and thrombin inhibitors. Recently, the important role in the platelet aggregation of adenosine diphosphate (ADP)-activated P2Y12 and P2Y1 receptors, Gprotein coupled receptors of the P2 purinergic family, has emerged, and their inhibitors are explored as potential therapeutic antithrombotics.
View Article and Find Full Text PDFGlycogen synthase kinase 3β (GSK-3β) and casein kinase 1δ (CK-1δ) are emerging targets for the treatment of neuroinflammatory disorders, including Parkinson's disease. An inhibitor able to target these two kinases was developed by docking-based design. Compound 12, 3-(7-amino-5-(cyclohexylamino)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-2-yl)-2-cyanoacrylamide, showed combined inhibitory activity against GSK-3β and CK-1δ [IC (GSK-3β)=0.
View Article and Find Full Text PDF