Publications by authors named "Stephanie E Zimmer"

Article Synopsis
  • Lipid rafts are specialized areas in cell membranes that help organize proteins and regulate cellular functions, but how desmosomal proteins interact with these rafts is not well understood.
  • Researchers focused on desmoglein-1 (DSG1), a key desmosomal protein, and found that specific features of its transmembrane domain (TMD), such as length and size, significantly affect its association with lipid rafts.
  • The study concluded that the efficient association of DSG1 with lipid rafts is crucial for the formation and stability of desmosomes, which are important for cell adhesion and mechanical strength.
View Article and Find Full Text PDF

Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis.

View Article and Find Full Text PDF

Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1 variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association.

View Article and Find Full Text PDF

Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1) and SAM syndrome (DSG1), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1 mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant.

View Article and Find Full Text PDF

Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol.

View Article and Find Full Text PDF

Desmogleins (Dsgs) are cadherin family adhesion molecules essential for epidermal integrity. Previous studies have shown that desmogleins associate with lipid rafts, but the significance of this association was not clear. Here, we report that the desmoglein transmembrane domain (TMD) is the primary determinant of raft association.

View Article and Find Full Text PDF

Genomic studies have repeatedly associated variants in the gene encoding the microRNA miR-137 with increased schizophrenia risk. Bioinformatic predictions suggest that miR-137 regulates schizophrenia-associated signaling pathways critical to neural development, but these predictions remain largely unvalidated. In the present study, we demonstrate that miR-137 regulates neuronal levels of p55γ, PTEN, Akt2, GSK3β, mTOR, and rictor.

View Article and Find Full Text PDF

The autism-related protein Fragile X mental retardation protein (FMRP) is an RNA binding protein that plays important roles during both nervous system development and experience dependent plasticity. Alternative splicing of the Fmr1 locus gives rise to 12 different FMRP splice forms that differ in the functional and regulatory domains they contain as well as in their expression profile among brain regions and across development. Complete loss of FMRP leads to morphological and functional changes in neurons, including an increase in the size and complexity of the axonal arbor.

View Article and Find Full Text PDF