Cross-species virus transmission events can lead to dire public health emergencies in the form of epidemics and pandemics. One example in animals is the emergence of the H3N8 equine influenza virus (EIV), first isolated in 1963 in Miami, FL, USA, after emerging among horses in South America. In the early 21st century, the American lineage of EIV diverged into two 'Florida' clades that persist today, while an EIV transferred to dogs around 1999 and gave rise to the H3N8 canine influenza virus (CIV), first reported in 2004.
View Article and Find Full Text PDFEquine influenza virus strains of Florida sublineage clade 1 (Fc1) have been circulating in North America. In this study, virus neutralization assays were performed to evaluate antigenic differences between Fc1 vaccine strains and North American Fc1 strains isolated in 2021-2022, using equine antisera against A/equine/South Africa/4/2003 (a vaccine strain recommended by the World Organisation for Animal Health) and A/equine/Ibaraki/1/2007 (a Japanese vaccine strain). Antibody titers against four North American Fc1 strains isolated in 2021-2022 were comparable to those against the homologous vaccine strains.
View Article and Find Full Text PDFAntibodies to influenza D virus (IDV) have been detected in horses, but no evidence of disease in the field has been reported. To determine whether IDV is infectious, immunogenic, and pathogenic in horses, four 2-year-old horses seronegative for both influenza A (H3N8) and D viruses were intranasally inoculated with 6.25 × 10 TCID/animal of D/bovine/California/0363/2019 (D/CA2019) virus, using a portable equine nebulizer system.
View Article and Find Full Text PDFLoss of skeletal muscle mass likely compromises performance and welfare in horses and thus routine monitoring would be valuable. Currently available methods to assess muscle mass require expert knowledge and are often expensive. To provide a simple method, a muscle atrophy scoring system (MASS) was created and tested by three evaluators (raters) in 38 horses of varying age, breed, and health status.
View Article and Find Full Text PDFSerologic tests for equine influenza virus (EIV) antibodies are used for many purposes, including retrospective diagnosis, subtyping of virus isolates, antigenic comparison of different virus strains, and measurement of immune responses to EIV vaccines. The hemagglutination inhibition (HI) assay, single radial hemolysis (SRH), and serum micro-neutralization tests are the most widely used for these purposes and are described here. The presence of inhibitors of hemagglutination in equine serum complicates interpretation of HI assay results, and there are alternative protocols (receptor-destroying enzyme, periodate, trypsin-periodate) for their removal.
View Article and Find Full Text PDFEquine influenza viruses are cultured in embryonated chicken eggs or in mammalian cells, generally Madin-Darby canine kidney (MDCK) cells, using methods much the same as for other influenza A viruses. Mutations associated with host adaptation occur in both eggs and MDCK cells, but the latter show greater heterogeneity and eggs are the generally preferred host. Both equine-1 H7N7 and equine-2 H3N8 viruses replicate efficiently in 11-day-old eggs, but we find that equine-1 viruses kill the embryos whereas equine-2 viruses do not.
View Article and Find Full Text PDFIn horses, presumptive diagnosis of equine influenza is commonly made on the basis of clinical signs. This alone is insufficient for confirmation of equine influenza, because other equine infectious respiratory diseases can in some degree have similar clinical presentations. Surveillance and control of equine influenza also necessitate detection of subclinical cases.
View Article and Find Full Text PDFVet Immunol Immunopathol
March 2020
Similarly to aged humans, senior horses (≥20 years) exhibit chronic low-grade inflammation systemically, known as inflamm-aging. Inflamm-aging in the senior horse has been characterized by increased circulating inflammatory cytokines as well as increased inflammatory cytokine production by lymphocytes and monocytes in response to a mitogen. Little is currently known regarding underlying causes of inflamm-aging.
View Article and Find Full Text PDFEquine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR).
View Article and Find Full Text PDFSerologic tests for equine influenza virus (EIV) antibodies are used for many purposes, including retrospective diagnosis, subtyping of virus isolates, antigenic comparison of different virus strains, and measurement of immune responses to EIV vaccines. The hemagglutination-inhibition (HI), single radial hemolysis (SRH), and serum micro-neutralization tests are the most widely used for these purposes and are described here. The presence of inhibitors of hemagglutination in equine serum complicates interpretation of HI assay results, and there are alternative protocols (receptor-destroying enzyme, periodate, trypsin-periodate) for their removal.
View Article and Find Full Text PDFEquine influenza viruses are cultured in embryonated hen eggs, or in mammalian cells, generally Madin-Darby canine kidney (MDCK) cells, using methods much the same as for other influenza A viruses. Mutations associated with host adaptation occur in both eggs and MDCK cells, but the latter show greater heterogeneity and eggs are the generally preferred host. Both equine-1 H7N7 and equine-2 H3N8 viruses replicate efficiently in 11-day-old eggs, but we find that equine-1 viruses kill the embryos whereas equine-2 viruses do not.
View Article and Find Full Text PDFIn horses, presumptive diagnosis of equine influenza is commonly made on the basis of clinical signs. This alone is insufficient for confirmation of equine influenza, because other equine infectious respiratory diseases can in some degree have similar clinical presentations. Surveillance and control of equine influenza also necessitate detection of subclinical cases.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
December 2013
We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies.
View Article and Find Full Text PDFEquine influenza A (H3N8) virus infection is a leading cause of respiratory disease in horses, resulting in widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, often requiring the development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against diverse subtypes and require frequent boosts.
View Article and Find Full Text PDFThe objective of this study was to develop and evaluate new TaqMan real-time reverse transcription-PCR (rRT-PCR) assays by the use of the minor groove binding probe to detect a wide range of equine influenza virus (EIV) strains comprising both subtypes of the virus (H3N8 and H7N7). A total of eight rRT-PCR assays were developed, targeting the nucleoprotein (NP), matrix (M), and hemagglutinin (HA) genes of the two EIV subtypes. None of the eight assays cross-reacted with any of the other known equine respiratory viruses.
View Article and Find Full Text PDFAdvanced age is associated with a low-grade, systemic inflammatory response characterized by increased inflammatory cytokine production both in vitro and in vivo, termed inflamm-aging. It is also known that increased white adipose tissue, associated with obesity, leads to increased production of inflammatory cytokines. To date, it is unknown whether increased adiposity contributes to the age-related increased inflammatory status.
View Article and Find Full Text PDFObjective: To determine whether an inflammatory challenge induces insulin resistance in horses and examine possible contributions of adipose tissue to inflammatory cytokine production.
Animals: 15 adult mares.
Procedures: Lipopolysaccharide (0.