Publications by authors named "Stephanie Deward"

Article Synopsis
  • Glutamine synthetase (GS), encoded by the GLUL gene, converts glutamate to glutamine and plays a crucial role in neurotransmitter production and ammonia detoxification in the brain.
  • *Variations in the GLUL gene can lead to severe developmental delays and neurological disorders in infants due to improper regulation of GS levels.
  • *Research indicates that certain genetic mutations can result in a stable but non-regulated form of GS, highlighting the need for careful control of glutamine metabolism during brain development.
View Article and Find Full Text PDF

Summary: SOX5 plays an important role in chondrogenesis and chondrocyte differentiation. SOX5 defects in humans (often deletions) result in a Lamb-Shaffer syndrome (LSS), presenting with speech delay, behavioral problems and minor dysmorphic features. We present a patient with idiopathic short stature (ISS) who carried a heterozygous novel variant in SOX5.

View Article and Find Full Text PDF
Article Synopsis
  • A study compared the effects of triheptanoin (C7) and trioctanoin (C8) on patients with long-chain fatty acid oxidation disorders (LC-FAODs) through a randomized controlled trial involving 32 subjects.
  • C7 showed a significant improvement in left ventricular ejection fraction and a reduction in left ventricular wall mass, while participants also had a lower heart rate during exercise compared to those taking C8.
  • However, there were no differences observed in total energy expenditure, phosphocreatine recovery, body composition, or adverse events between the two groups.
View Article and Find Full Text PDF

Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings.

View Article and Find Full Text PDF

Background: Long chain fatty acid oxidation disorders (LC-FAODs) are caused by defects in the metabolic pathway that converts stored long-chain fatty acids into energy, leading to a deficiency in mitochondrial energy production during times of physiologic stress and fasting. Severe and potentially life threatening clinical manifestations include rhabdomyolysis, hypoglycemia, hypotonia/weakness, cardiomyopathy and sudden death. We present the largest cohort of patients to date treated with triheptanoin, a specialized medium odd chain (C7) triglyceride, as a novel energy source for the treatment of LC-FAOD.

View Article and Find Full Text PDF

We report five fetuses and a child from three families who shared a phenotype comprising cerebral ventriculomegaly and echogenic kidneys with histopathological findings of congenital nephrosis. The presenting features were greatly elevated maternal serum alpha-fetoprotein (MSAFP) or amniotic fluid alpha-fetoprotein (AFAFP) levels or abnormalities visualized on ultrasound scan during the second trimester of pregnancy. Exome sequencing revealed deleterious sequence variants in Crumbs, Drosophila, Homolog of, 2 (CRB2) consistent with autosomal-recessive inheritance.

View Article and Find Full Text PDF

Objective: Efficient diagnosis of an underlying genetic aetiology in a patient with congenital heart disease is essential to optimising clinical care. Copy number variants are one aetiology of congenital heart disease; the majority are identifiable by targeted fluorescence in situ hybridisation or array comparative genomic hybridisation, not by classical cytogenetic analysis. This study assessed the utility of array comparative genomic hybridisation as a first-tier diagnostic test for neonates with congenital heart disease.

View Article and Find Full Text PDF

Bringing treatments for rare genetic diseases to patients requires clinical research. Despite increasing activism from patient support and advocacy groups to increase access to clinical research studies, connecting rare disease patients with the clinical research opportunities that may help them has proven challenging. Chief among these challenges are the low incidence of these diseases resulting in a very small pool of known patients with a particular disease, difficulty of diagnosing rare genetic diseases, logistical issues such as long distances to the nearest treatment center, and substantial disease burden leading to loss of independence.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a rare metabolic disease with the hallmark finding of deficient serum tissue nonspecific alkaline phosphatase (TNSALP) activity. TNSALP is primarily known for its role in mineralization; hence, HPP is characterized by defective mineralization of bone and/or teeth. TNSALP is also necessary for proper vitamin B6 metabolism and its participation as a cofactor for neurotransmitters in the central nervous system.

View Article and Find Full Text PDF

A broad spectrum of neurodevelopmental and psychiatric disorders with variable expressivity has been reported to be associated with 15q13.3 heterozygous microdeletions. Using oligonucleotide-based array-CGH analysis, we identified a small homozygous 15q13.

View Article and Find Full Text PDF

We characterized three supernumerary marker chromosomes (SMCs) simultaneously present in a 2-year- and 10-month-old male patient with mental retardation and dysmorphic features. Peripheral blood chromosome analysis revealed two to three SMCs in 25/26 cells analyzed. The remaining one cell had one SMC.

View Article and Find Full Text PDF