The formation of acetic acid from pentoses was studied in aqueous buffered systems (90-120 degrees C, pH 6.0-8.0) containing equimolar concentrations of 13C-labeled xylose and glycine.
View Article and Find Full Text PDFThe formation of short-chain carboxylic acids was studied in Maillard model systems (90 degrees C, pH 6-10) with emphasis on the role of oxygen and water. The total amount of acetic acid formed did not depend on the reaction atmosphere. In the presence of labeled dioxygen or water (18O2, H2 17O), labeled oxygen was partially incorporated into acetic acid.
View Article and Find Full Text PDFThe formation of acetic acid was elucidated based on volatile reaction products and related nonvolatile key intermediates. The origin and yield of acetic acid were determined under well-controlled conditions (90-120 degrees C, pH 6-8). Experiments with various 13C-labeled glucose isotopomers in the presence of glycine revealed all six carbon atoms being incorporated into acetic acid: C-1/C-2 ( approximately 70%), C-3/C-4 ( approximately 10%), and C-5/C-6 (approximately 20%).
View Article and Find Full Text PDFThe effect of the reaction conditions on the origin and yields of acetic acid from glucose was studied in the system containing equimolar concentrations of 13C-labeled glucose and glycine. Acetic acid was quantified by GC-MS using isotope dilution assay. The beta-dicarbonyl cleavage of 1-deoxyhexo-2,4-diulose is proposed to be a major pathway leading to the formation of acetic acid in the glucose-based Maillard reaction systems under food processing conditions.
View Article and Find Full Text PDFHigh-performance cation exchange chromatography coupled to tandem mass spectrometry or electrochemical detection was found to be an efficient tool for analyzing Amadori compounds derived from hexose and pentose sugars. The method allows rapid separation and identification of Amadori compounds, while benefiting from the well-known advantages of mass spectrometry, such as specificity and sensitivity. Glucose- and xylose-derived Amadori compounds of several amino acids, such as glycine, alanine, valine, leucine/isoleucine, methionine, proline, phenylalanine, and glutamic acid, were separated or discriminated using this new method.
View Article and Find Full Text PDFThe formation of acrylamide was studied in low-moisture Maillard model systems (180 degrees C, 5 min) based on asparagine, reducing sugars, Maillard intermediates, and sugar degradation products. We show evidence that certain glycoconjugates play a major role in acrylamide formation. The N-glycosyl of asparagine generated about 2.
View Article and Find Full Text PDFCapillary electrophoresis coupled to mass spectrometry (CE-MS) is reported for the first time as an alternative and powerful analytical method for the characterization and monitoring of N-substituted 1-amino-1-deoxyketoses (Amadori compounds). It allows rapid separation and identification of Amadori compounds, while benefiting from the well-known advantages of MS, such as specificity and sensitivity. Amadori compounds of several amino acids, such as glycine, valine, isoleucine, methionine, proline, and phenylalanine, as well as a cysteine-derived compound, were separated and/or discriminated using CE-MS/MS under standard conditions.
View Article and Find Full Text PDFFormation of the odorants acetic acid, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone (HDMF), 6-acetyl-1,2,3,4-tetrahydropyridine (ATHP), and 2-acetyl-1-pyrroline (AP) was monitored by isotope dilution assays at pH 6, 7, and 8 in Maillard model reactions containing glucose and proline (Glc/Pro) or the corresponding Amadori compound fructosyl-proline (Fru-Pro). In general, higher yields were obtained at pH 7 and 8. Acetic acid was the major odorant with up to 40 mg/mmol precursor followed by HDMF (up to 0.
View Article and Find Full Text PDFThe stability of the coffee flavor compound furfuryl mercaptan has been investigated in aqueous solutions under Fenton-type reaction conditions. The impact of hydrogen peroxide, iron, ascorbic acid, and ethylenediaminetetraacetic acid was studied in various combinations of reagents and temperature. Furfuryl mercaptan reacts readily under Fenton-type reaction conditions, leading to up to 90% degradation within 1 h at 37 degrees C.
View Article and Find Full Text PDF